首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:函数f(x),x∈D为严格单调函数的充分必要条件是,对任何x1,x2,x3∈D,x1<x2<x3,有 [f(x1)-f(x2)][f(x2)-f(x3)]>0.
证明:函数f(x),x∈D为严格单调函数的充分必要条件是,对任何x1,x2,x3∈D,x1<x2<x3,有 [f(x1)-f(x2)][f(x2)-f(x3)]>0.
admin
2022-10-31
22
问题
证明:函数f(x),x∈D为严格单调函数的充分必要条件是,对任何x
1
,x
2
,x
3
∈D,x
1
<x
2
<x
3
,有
[f(x
1
)-f(x
2
)][f(x
2
)-f(x
3
)]>0.
选项
答案
“[*]”不妨设f(x)是严格递增函数,则对[*]x
1
,x
2
,x
3
∈D,x
1
<x
2
<x
3
,有 f(x
1
)<f(x
2
),f(x
2
)<f(x
3
), 故f(x
1
)-f(x
2
)<0,f(x
2
)-f(x
3
)<0, 于是有 f(x
1
)-f(x
2
)][f(x
2
)-f(x
1
)]>0. “[*]”用反证法.假设f不是严格单调的,则[*]a
1
,a
2
∈D,a
1
<<a
2
,f(a
1
)≤f(a
2
),又[*]a
3
,a
4
∈D,a
3
<a
4
,f(a
3
)≥f(a
4
).通过讨论可知:在a
1
,a
2
,a
3
,a
4
四点中总可选出三点,记为x
1
.x
2
,x
3
,它们满足x
1
<x
2
<x
3
,且 f(x
1
)≤f(x
2
),f(x
2
)≥f(x
3
)(或f(x
1
)≥f(x
2
),f(x
2
)≤f(x
3
)), 于是[f(x
1
)-f(x
2
)][f(x
2
)-f(x
1
)]≤0,与题设条件相矛盾.由此可见f为严格单调函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/FQgD777K
0
考研数学三
相关试题推荐
()不是单纯词。
德尔菲法(Dclphitechniquc)为最常用的一种直观型顶测法,这主要是一种直接向_____征询意见的方法。
判断下列句子是否符合普通话规范上学期他们有三门功课考得很不好。
等差数列{an)的前n项和为Sn,若a1=3,S3=15,则a6=().
没有一个宗教命题能够通过观察或实验而被验证为真。所以,无法知道任何宗教命题的真实性。为了合乎逻辑地推出上述结论,需要假设下面哪项为前提?
结合材料回答问题:华为从容的背后,有我们时代的整体加持华为遭遇美国极限施压之际,任正非接受媒体采访的内容刷屏。中国企业与中国企业家的自信、大气与从容,呈现于谈笑风生之间。从时代的角度审视,我
函数f(x)=x3/(1-x)2展开成x的幂级数为________.
设幂级数an(2x-1)n在x=-4处条件收敛,则幂级数an(3x-2)2n+1的收敛区间为().
设f(x)在[a,b]上连续,x,y∈[a,b],满足a≤f(x)≤b以及|f(x)-f(y)|≤α|x-y|,其中0≤α<1.试证:存在唯一的
随机试题
A.脊柱结核B.脊柱恶性肿瘤C.强直性脊柱炎D.退行性脊柱骨关节病X线表现为“竹节样”改变,常见于
A、易爆炸品B、自燃及遇火燃烧的药品C、易燃液体D、极毒品及杀害性药品E、具有强烈腐蚀性的药品甲醇为
建设工程材料采购评标采用最低评标价法时,评标委员会按招标文件规定的评标价格调整方法进行必要的价格调整,并编制标价比较表,价格调整因素包括()。
货运合同的法律特征体现在()。
中小学教育评价的内容包括以下哪几方面?()
抽烟的人一旦抽烟就会产生愉悦感;若不抽烟时就会觉得浑身不自在。这种情况说明()
李某在环城公园摆摊烧烤,影响公共环境卫生,某区城管以此为由,将李某从事经营的小推车等物品扣押,在实施扣押过程中,李某用力反抗,城管执法人员王某与李某发生冲突,进而将李某打伤。据此,下列说法正确的是()。
以下四个命题中,正确的是()
Lookatthelistbelow.Itshowscompaniesthatprovideservicesforexportbusinesses.Forquestions6-10,decidewhichcompa
ThemysteryoftheexpansionofseaicearoundAntarctica,atthesametimeasglobalwarmingismeltingswathsofArcticseaic
最新回复
(
0
)