[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时, β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式.

admin2019-04-28  31

问题 [2004年]  设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,
β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式.

选项

答案当a≠0且a-b=0,即a=b≠0时,对[A|β]施以初等行变换,有 [*] 可知秩(A)=秩([A|β])=2,故方程组①有无穷多解.其一基础解系只含一个解向量α=[0,1,1]T,其一个特解为η=[1-1/a,1/a,0],故以k1,k2,k3为未知数的方程组①的通解为 [k1,k2,k3=η+cα=[1-1/a,1/a,0]T+c[0,1,1]T=[1-1/a,1/a+c,c]T(c为任意常数). 于是β可由α1,α2,α3线性表示,其一般表示式为 β=k1α1+k2α2+k3α3=(1-1/a)α1+(1/a+c)α2+cα3 (c为任意常数). 由上式易知,由于c为任意常数,β由α1,α2,α3线性表出的一般表达式,常归结为求关于未知数k1,k2,k3的方程组β=k1α1+k2α2+k3β3的通解.

解析
转载请注明原文地址:https://kaotiyun.com/show/FzJ4777K
0

最新回复(0)