首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设矩阵 求可逆矩阵P,使(AP)T(AP)为对角矩阵.
admin
2018-07-26
20
问题
设矩阵
求可逆矩阵P,使(AP)
T
(AP)为对角矩阵.
选项
答案
由A
T
=A,得(AP)
T
(AP)=P
T
A
2
P,而矩阵 [*] 以下欲求矩阵P,使P
T
A
2
P为对角矩阵,可以有几种方法: 方法1 考虑二次型 X
T
A
2
X=x
1
2
+x
2
2
+5x
3
2
+5x
4
2
+8x
3
x
4
=x
1
2
+x
2
2
+5(x
3
+[*]x
4
)
2
+x
4
2
令y
1
=x
1
,y
2
=x
2
,y
3
=x
3
+[*]x
4
,y
4
=x
4
,得 [*] 方法2 因为A
2
为实对称矩阵,所以存在正交矩阵P,使得P
-1
A
2
P=P
T
A
2
P为对角矩阵.下面来求这样的正交矩阵P. 首先求出A
2
的全部特征值:λ
1
=λ
2
=λ
3
=1,λ
4
=9. 计算可得对应于λ
1
=λ
2
=λ
3
=1的特征向量为 α
1
=(1,0,0,0)
T
,α
2
=(0,1,0,0)
T
,α
3
=(0,0,-1,1)
T
α
1
,α
2
,α
3
已两两正交,经单位化后,得向量组 β
1
=(1,0,0,0)
T
,β
2
=(0,1,0,0)
T
,β
3
=(0,0,-[*])
T
计算可得对应于λ
4
=9的特征向量为α
4
=(0,0,1,1)
T
,经单位化后,得 [*] 令矩阵 P=[β
1
β
2
β
3
β
4
] [*] 则有 P
T
A
2
P=(AP)
T
(AP) [*] 方法3易求出实对称矩阵A的特征值为1,1;-1,3,对应的规范正交的特征向量可取为 [*] 因此有正交矩阵 P=[e
1
e
2
e
3
e
4
] [*] 使P
-1
AP=P
T
AP=diag(1,1,-1,3),从而有 P
T
A
2
P=(P
T
AP)(P
T
AP)=diag(1,1,1,9).
解析
转载请注明原文地址:https://kaotiyun.com/show/GHW4777K
0
考研数学三
相关试题推荐
某工厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时的总收益函数为R(x,y)=42x+27y-4x2-2xy-2,总成本函数为C(x,y)=36+8x+12y(单位:万元).除此之外,生产甲、乙两种产品每吨还需分别支付排污费2万元,1万
判断下列结论是否正确,并证明你的判断.(Ⅰ)设当n>N时xn<yn,已知极限均存在,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又存在c∈(a,b)使得极限,则f(x)在(a,b)有界;(Ⅲ)若=∞.则存在δ>0.使得当0<|x-a|<δ时有界.
设f(x)是在(-∞,+∞)上连续且以T为周期的周期函数,求证:方程f(x)-的闭区间上至少有一个实根.
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
已知向量组α1=(1,2,-1,1)T,α2=(2,0,a,0)T,α3=(0,-4,5,1-a)T的秩为2,则a=______.
证明:与基础解系等价的线性无关的向量组也是基础解系.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
求曲线上点(0,0)处的切线方程.
随机试题
手握空拳以食、中、无名、小指近侧指间关节背侧突起部着力的手法是:()
脑出血与蛛网膜下隙出血的主要区别是
下列选项中,属于世亚行贷款项目的主要采购方式的有()。
已知矩阵,则A的秩r(A)等于()。
潜在投标人名单确定后,对每一个潜在投标人提供的资料进一步评审,合格的投标人应具有圆满履行合同的能力,符合下列条件( )。
在质量管理体系八项原则中,体现组织进行质量管理的基本出发点与归宿点的原则是()。
属于工资核算模块初始化设置的有()。
某房地产开发公司系增值税一般纳税人,2018年3月25日与政府部门签订了紫金项目的土地使用权出让合同,土地出让金3亿元,合同约定土地出让金于3月30日前支付,但未约定具体交付土地日期,实际交付日期4月25日。请写出销售开发产品采用一般计税方法计算增值税
孟子说“征于色,发于声,而后喻”,意在强调教师的()
从人类可持续发展的角度来说,植物性食品对于地球资源的利用率确实要高一些。对于那些为了这个目标而素食的人来说,确实应该给予充分的尊敬。但是人类的发展毕竟是为了让人们活得更美好。那些让人们活得很美好的东西,无论是汽车飞机还是电脑网络,都是依靠消耗地球资源而存在
最新回复
(
0
)