首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设矩阵 求可逆矩阵P,使(AP)T(AP)为对角矩阵.
admin
2018-07-26
18
问题
设矩阵
求可逆矩阵P,使(AP)
T
(AP)为对角矩阵.
选项
答案
由A
T
=A,得(AP)
T
(AP)=P
T
A
2
P,而矩阵 [*] 以下欲求矩阵P,使P
T
A
2
P为对角矩阵,可以有几种方法: 方法1 考虑二次型 X
T
A
2
X=x
1
2
+x
2
2
+5x
3
2
+5x
4
2
+8x
3
x
4
=x
1
2
+x
2
2
+5(x
3
+[*]x
4
)
2
+x
4
2
令y
1
=x
1
,y
2
=x
2
,y
3
=x
3
+[*]x
4
,y
4
=x
4
,得 [*] 方法2 因为A
2
为实对称矩阵,所以存在正交矩阵P,使得P
-1
A
2
P=P
T
A
2
P为对角矩阵.下面来求这样的正交矩阵P. 首先求出A
2
的全部特征值:λ
1
=λ
2
=λ
3
=1,λ
4
=9. 计算可得对应于λ
1
=λ
2
=λ
3
=1的特征向量为 α
1
=(1,0,0,0)
T
,α
2
=(0,1,0,0)
T
,α
3
=(0,0,-1,1)
T
α
1
,α
2
,α
3
已两两正交,经单位化后,得向量组 β
1
=(1,0,0,0)
T
,β
2
=(0,1,0,0)
T
,β
3
=(0,0,-[*])
T
计算可得对应于λ
4
=9的特征向量为α
4
=(0,0,1,1)
T
,经单位化后,得 [*] 令矩阵 P=[β
1
β
2
β
3
β
4
] [*] 则有 P
T
A
2
P=(AP)
T
(AP) [*] 方法3易求出实对称矩阵A的特征值为1,1;-1,3,对应的规范正交的特征向量可取为 [*] 因此有正交矩阵 P=[e
1
e
2
e
3
e
4
] [*] 使P
-1
AP=P
T
AP=diag(1,1,-1,3),从而有 P
T
A
2
P=(P
T
AP)(P
T
AP)=diag(1,1,1,9).
解析
转载请注明原文地址:https://kaotiyun.com/show/GHW4777K
0
考研数学三
相关试题推荐
随机地向半圆(a为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比,用X表示原点到该点连线与x轴正方向的夹角,求X的概率密度.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
求微分方程y’’+4y’+5y=8cosx的当x→-∞时为有界函数的特解.
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒丙中,最后从丙盒内再任取1个球,试求:(Ⅰ)从丙盒内取出的是白球的概率;(Ⅱ)若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
假设随机事件A与B相互独立,,求a的值.
设一曲线过点(e,1),且在此曲线上任意一点M(x,y)处的法线斜率为,求此曲线方程.
曲线y=的渐近线方程为_______.
设α0是A属于特征值λ0的特征向量,则α0不一定是其特征向量的矩阵是
求曲线上点(0,0)处的切线方程.
随机试题
下列哪种类花生酸类物质没有活性?
法定代理终止的情形不包括:()
男性,28岁,农民,因畏寒发热18天,伴腹胀腹泻10天,在当地医院经用青霉素、链霉素治疗效果不佳。最近2天来大便带黑色,因病情加重转来我院。查体:急性病容,神清,皮肤未见皮疹和出血点,颈部有轻度抵抗感,腹部稍胀,肝肋下1.5cm,质中,压痛阳性,脾肋下2c
上消化道出血伴休克紧急入院抢救,不对的护理措施是()
在腰肌劳损的治疗方法中不正确的是
转胞气虚证的治法转胞肾虚证的治法
总体而言,非瓣膜病慢性房颤患者每年发生脑卒中的可能性为
根据《关于进一步加强投资连结保险销售管理的通知》的规定,在银行销售的新单趸交保费限制在()万元以上。
幼儿想象的典型形式是()。
淬火效应原意为金属工件加热到一定温度后,浸入冷却剂(油、火等)中,经过冷却处理,工件的性能更好、更稳定。引申到教育学中,对长期受表扬头脑有些发热的学生,不妨设置一点小小的障碍,施以“挫折教育”,几经锻炼,其心理会更趋成熟,心理承受能力会更强;对于麻烦事或者
最新回复
(
0
)