首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为3维单位列向量,E为3阶单位矩阵,则矩阵E一ααT的秩为________.
设α为3维单位列向量,E为3阶单位矩阵,则矩阵E一ααT的秩为________.
admin
2018-07-31
26
问题
设α为3维单位列向量,E为3阶单位矩阵,则矩阵E一αα
T
的秩为________.
选项
答案
2.
解析
记矩阵A=E一αα
T
,则由α
T
α=1,易得A
2
=A,由此知A不可逆.(否则A可逆,用A
—1
左乘A
2
=A两端,得A=E,这与A≠E矛盾(若A=E,则αα
T
=O,但αα
T
≠O)),所以A不可逆(由此也可知A的秩小于3),因此A有特征值为0.设A按列分块为A=(β
1
,β
2
,β
3
),则由A
2
=A可得Aβ
j
=β
j
(j=1,2,3).这表明β是A的属于特征值1的特征向量.以上说明A有特征值λ
1
=0,λ
2
=1.再由A的全部特征值之和=A的主对角线元素之和=3一a
1
2
—a
2
2
—a
3
2
=3一1=2,知A的另一特征值λ
3
=1.因此,A的全部特征值为0,1,1.因为A是3阶实对称矩阵,所以,A相似于对角矩阵M=diag(0,1,1).因相似矩阵有相同的秩,从而得r(A)=r(M)=2.
转载请注明原文地址:https://kaotiyun.com/show/Gwg4777K
0
考研数学一
相关试题推荐
设二次型f=2x12+2x22+ax32+2x1x2+2x1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设Y~,求矩阵A可对角化的概率.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设方阵A1与B1合同,A2与B2合同,证明:合同。
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是()
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
下列说法正确的是()。
酶竞争性抑制剂的叙述不正确的是
A.缩血管药B.扩血管药C.补充血容量D.利尿药物E.纠酸药物过敏性休克的治疗主要使用
按照规定,企业的财务会计报告一般应于()报出。
进口食品的报检范围指:( )。
下列各项中,应计入其他应付款的有()。
()是指导人民警察正确办案的一项重要刑事政策。
2019年6月30日,经过四年多的建设,北京()国际机场建设工程如期竣工,工作重点转入到准备投入运行阶段。
[*]
搜索考生文件夹下的ABC.PRG文件,然后将其删除。
最新回复
(
0
)