首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2019-09-04
58
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得 F’(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x-x
1
)f(x)恒正或恒负,于是∫
0
π
sin(x-x
1
)f(x)dx≠0. 而∫
0
π
sin(x-x
1
)f(x)dx=cosx
1
∫
0
π
f(x)sinxdx-sinx
1
∫
0
π
f(x)cosxdx=0,矛盾,所以f(x)在(0,π)内至少有两个零点.不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔定理,存在ξ∈(x
1
,x
2
)[*](0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/IOJ4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表示?证明你的结论.(2)α4能否由α1,α2,α3线性表示?证明你的结论.
函数f(x,y)=
设矩阵A=矩阵B=(kE+A)2,求对角矩阵A,并证明B和A相似,并问k为何值时,B为正定矩阵.
判别级数的敛散性.
级数的和为_______.
设f(x)=试确定常数a,b,c,使f(x)在点x=0处连续且可导.
设.交换积分次序后I=______.
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;(Ⅱ)(1+xn)收敛;(Ⅲ)Fn(x)=+∞。
设f(x)=∫1xe-t2dt,求∫01f(x)dx.
已知y=xsinx+sin2x,求y′.
随机试题
简述排尿反射的过程。
患者,男,22岁。近3周出现间断上腹痛,饭后减轻,近3天排柏油样便,量约300g/d,伴头晕,活动后心慌。查体:贫血貌,腹部平软,无压痛,无肌紧张,肝脾未及,肠鸣音活跃。为明确出血病因,最需要进行的检查是
A.先煎B.后下C.包煎D.另煎E.烊化
尿液一般检查应留取()
A市B县人民法院受理王海诉邹天名誉侵权纠纷一案,判决邹天在判决生效后1个月内赔偿王海10万元,承担诉讼费用,并在该市日报上登报赔礼道歉.日后不得在任何场合有侵害王海名誉的言行。邹天不服,提起上诉。A市中级人民法院经审理作出维持原判的二审判决。判决于5月l2
可视为生产物流系统的终点,也是销售物流系统起点的是()。
设事件A={抽10件产品,检验发现不合格品不多于5件},事件B={抽10件产品,检验发现不合格品至少有7件},则下列叙述正确的有()。
肺活量
从中华人民共和国成立到社会主义改造基本完成,作为一个过渡形态阶段,党在这时期的总路线和总任务,是要在一个相当长的时期内,逐步实现国家的社会主义工业化,并逐步实现国家对农业、手工业和资本主义工商业的社会主义改造。这条总路线最显著的特点是()
A、Itissimilartohousingproblem.B、Itgetsbetterwhenonecitydevelops.C、Itiscausedbymoneyortechnology.D、Itrelates
最新回复
(
0
)