首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,证明当AT=A*时,A可逆.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,证明当AT=A*时,A可逆.
admin
2021-02-25
53
问题
设A为n阶非零矩阵,A
*
是A的伴随矩阵,A
T
是A的转置矩阵,证明当A
T
=A
*
时,A可逆.
选项
答案
证法1:由A
T
=A
*
知A
ij
=a
ij
,其中A
ij
是a
ij
的代数余子式,于是 [*] 又因A≠0,所以至少有一元素a
ij
≠0,故|A|≠0.从而A可逆. 证法2:由AA
*
=|A|E及A
T
=A
*
知AA
*
=AA
T
=|A|E,若|A|=0,则有AA
T
=O.设A的行向量为α
i
(i=1,2,…,n),则α
i
α
i
T
=0,即α
i
=0,于是A=O,这与A是非零矩阵矛盾,故|A|≠0,从而A可逆.
解析
本题考查伴随矩阵A
*
的构成,证明A可逆,只需证明|A|≠0即可.
转载请注明原文地址:https://kaotiyun.com/show/IZ84777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且满足,k>1,证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ-1)f(ξ).
[*]
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
设三阶矩阵A的特征值为λ1=-1,λ2=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________
设三阶方阵A,B满足A-1BA=6A+BA,且A=,则B=________。
若3阶非零方阵B的每一列都是方程组的解,则λ=______,|B|=_______.
设A,B为3阶方阵,且|A|=1,|B|=2,|A-1+B|=2,则|A+B-1|=__________.
随机试题
欧洲大陆一些国家如意大利、荷兰等国家对于外国法的查明方法采用()
领导者在领导活动中占据______。
李商隐与杜甫合称“小李杜”,与温庭筠合称“温李”。()
微机的性能指标主要是指()
某女,25岁,人工流产术后2月余,月经未潮,每月有周期性下腹疼痛,伴肛门坠痛。查:宫颈举痛,子宫稍大,压痛明显;化验尿妊娠试验(-)。首先应考虑
最常见的子宫内膜异位症病灶部位在( )。
A.头孢噻吩B.头孢克洛C.头孢哌酮D.头孢匹罗E.克拉维酸对革兰阳性菌、革兰阴性菌、厌氧菌等作用强的药物是()。
下列抗生素中对肾脏毒性最低者是( )。
中国特色社会主义包括()。
下列关于法定抵销及其适用条件的说法,正确的是()。
最新回复
(
0
)