首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=验证f(x)在[0,2]上满足拉格朗日中值定理的条件,求(0,2)内使得f(2)一f(0)=2f’(ξ)成立的ξ.
设f(x)=验证f(x)在[0,2]上满足拉格朗日中值定理的条件,求(0,2)内使得f(2)一f(0)=2f’(ξ)成立的ξ.
admin
2016-09-30
61
问题
设f(x)=
验证f(x)在[0,2]上满足拉格朗日中值定理的条件,求(0,2)内使得f(2)一f(0)=2f’(ξ)成立的ξ.
选项
答案
由f(1一0)=f(1)=f(1+0)=1得f(x)在x=1处连续,从而f(x)在[0,2]上连续. [*] 得f(x)在x=1处可导且f’(1)=一1,从而f(x)在(0,2)内可导, 故f(x)在[0.2]上满足拉格朗日中值定理的条件. f(2)一f(0)=[*]=一1. 当x∈(0,1)时,f’(x)=一x;当x>1时,f’(x)=[*] 即[*] 当0<ξ≤1时,由f(2)一f(0)=2f’(ξ)得一1=一2ξ,解得ξ=[*] 当1<ξ<2时,由f(2)一f(0)一2f’(ξ)得一1=[*] 解得ξ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/K5T4777K
0
考研数学三
相关试题推荐
[*]
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
由题设条件有βTαi=0(i=1,2,…,r),设k1α1+k2α2+…+krαr+kr+1β=θ,(*)两端左乘βT,得kr+1βTβ=0;又β≠θ,可得βTβ=||β||2>0,故kr+1=0,代入式(*),得k1α1+k2
证明:抛物面z=x2+y2+1上任一点处的切平面与曲面z=x2+y2所围成的立体的体积为一定值.
用比较判别法判断的敛散性.
设四面体的顶点为A(1,1,1),B(2,1,3),C(3,5,4),D(5,5,5),求该四面体的体积V.
写出满足下列条件的动点的轨迹方程,它们分别表示什么曲面?(1)动点到坐标原点的距离等于它到平面z=4的距离;(2)动点到坐标原点的距离等于它到点(2,3,4)的距离的一半;(3)动点到点(0,0,5)的距离等于它到x轴的距离;(4)动点到x轴的距离
将函数展为x的幂级数.
随机试题
阿米巴原虫是沿何途径进入肝内形成阿米巴性肝脓肿
王某,女57岁,咳喘12年,近半年下肢浮肿,经常心悸,动则尤甚,近2天来心悸咳喘加重,咯痰清稀,面部下肢浮肿,尿少,夜间不能平卧,面唇青紫,苔白滑舌胖质暗,脉沉细无力。
前人认为肥人多
在安全防范工程的施工中,安全防范设备检验检测后的紧后程序是()。
固定资产交付使用后发生的长期借款利息支出,应记入()账户核算。
下列描述正确的是:
曹操恢复和发展农业生产所采取的主要措施是()。
该极限式为1∞型未定式,可直接利用重要极限公式[*]进行计算,[*]
Thewriter’sgeneralattitudetowardstheworldleadersmeetingattheU.N.isTheword"deforestation"inParagraph3means
Anelderlycarpenterwasreadytoretire.Hetoldhisemployerofhisplansto【C1】______thehouse-buildingbusinesstoliveamo
最新回复
(
0
)