首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是 ( )
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1﹢bα4,aα2﹢bα3,aα3﹢bα2,aα4﹢bα1也是Ax=0的基础解系的充分必要条件是 ( )
admin
2018-12-21
42
问题
已知n维向量组α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的基础解系,则向量组aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
也是Ax=0的基础解系的充分必要条件是 ( )
选项
A、a=b.
B、a≠-b.
C、a≠b.
D、a≠±b.
答案
D
解析
向量组aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
均是Ax=0的解,且共4个,故该向量组是Ax=0的基础解系
该向量组线性无关.因(aα
1
l﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
)=(α
1
,α
2
,α
3
,α
4
)
且α
1
,α
2
,α
3
,α
4
线性无关,则aα
1
﹢bα
4
,aα
2
﹢bα
3
,aα
3
﹢bα
2
,aα
4
﹢bα
1
线性无关
=(a
2
-b
2
)≠0
a≠±b.
故应选(D).
(B),(C)是充分条件,并非必要,(A)既非充分又非必要,均应排除.
转载请注明原文地址:https://kaotiyun.com/show/KAj4777K
0
考研数学二
相关试题推荐
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βr线性表示,则【】
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2007年)设矩阵,则A与B【】
(2008年)曲线sin(χy)+ln(y-χ)=χ在点(0,1)处的切线方程是_______.
(2007年)设函数y=,则y(n)(0)=_______.
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S1,区间[0,χ]上以y=y(χ)为曲边的曲边梯形面积记为S2,并设2S1-S
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
求y’’-2y’-ex=0满足初始条件y(0)=1,y’(0)=1的特解.
已知的一个特征向量.(1)试确定a,b的值及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设x=x(y,z),y=y(z,x),z=z(x,y)都是方程F(x,y,z)=0所确定的隐函数,并且F(x,y,z)满足隐函数存在定理的条件,则=________.
随机试题
识别
患者,男,20岁。右下颌中位水平阻生第三磨牙拔除术后4小时,伤口仍出血,否认全身疾病史。分析出血原因,不包括
下列关于公文的格式的说法,正确的是()
肖某于2008年5月2日向好友袁某借款万元,双方约定肖某在下个月2日之前偿还。借款期满,肖某并未如约偿还欠款,而袁某碍于情面也未向肖某索要。天有不测风云,2009年11月3日,袁某染病身亡,其继承人直到2010年4月1日才确定。两个月后,袁某的继承人才猛然
变压器台数应根据负荷特点和经济运行进行选择,宜装设两台及以上变压器的条件是什么?()
企业发生的下列资产处置行为应按税法规定视同销售计征企业所得税的有()。
不属于贷款发放流程的是()
对已粘贴在应税凭证上的印花税票未划销或未注销的,税务机关可对纳税人处不缴或少缴税款()的罚款。
现代教育发展的根本动因是()。
克孜尔石窟所在地是__________。
最新回复
(
0
)