首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
admin
2019-07-22
87
问题
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
选项
答案
必要性.对矩阵A按列分块A=(α
1
,α
2
,…,α
n
),则 [*],Ax=b有解[*]α
1
,α
2
,…,α
n
可表示任何n维向量b [*]α
1
,α
2
,…,α
n
可表 示e
1
=(1,0,0,…,0)
T
,e
2
=(0,1,0,…,0)
T
,…,e
n
=(0,0,0,…,1)
T
[*]r(α
1
,α
2
,…,α
n
)≥r(e
1
,e
2
,…,e
n
)=n [*]r(A)=n. 所以|A|≠0. 充分性.由克莱姆法则,行列式|A|≠0时方程组必有唯一解,故[*],Ax=b总有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/KLN4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ,可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A是3阶不可逆矩阵,α1,α2是Aχ=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2χ-y)+g(χ,χy),求
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
设函数f(χ)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f〞(χ)<0,则在(0,a]上().
设f(x)具有二阶连续导数,且f’(1)=0,,则()
(10年)一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平激.当油罐中油面高度为时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
随机试题
2009年哥本哈根气候大会的主题是:全球变暖。关于此主题科学家中有两派对立的观点,“气候变暖派”认为,1900年以来地球变暖完全是由人类排放温室气体所致的。只要二氧化碳的浓度继续增加,地球就会继续变暖;两极冰川融化会使海平面上升,一些岛屿将被海水淹没。“气
石墨以团絮状存在的铸铁称为()。
工程项目管理中,工程项目计划的主要作用有()。
【背景资料】A公司中标某市城区高架路工程第二标段。本工程包括高架桥梁、地面辅道及其他附属工程:工程采用工程量清单计价,并在清单中列出了措施项目;双方签订了建设工程施工合同,其中约定工程款支付方式为按月计量支付,并约定发生争议时,向工程所在地仲裁委员会申请
对于根据计算机内()生成的会计报表数据,会计软件不能提供直接修改功能。
根据2016年原中国银监会发布的《商业银行表外业务风险管理指引(修订征求意见稿)》,()是指商业银行从事的,按照现行的会计准则不计入资产负债表内,不形成现实资产负债,但能够引起当期损益变动的业务。
迅驰电梯公司是世界上最大的电梯、自动扶梯和自动走道的制造、安装和服务公司。2003年公司总裁鲍博在主持公司年度会议时,为迅驰电梯公司提出了一个愿景:超越自己,在提供卓越服务方面成为世界范围内所有公司——不仅仅是电梯公司——公认的领袖。为了追求服务卓越,迅驰
下列谱例中用的是哪种模仿手法?()
我国法律规定行政处罚和刑罚可以折抵,但下列哪种情况不能出现?()
设f(x)可导,且,又则a=_______.
最新回复
(
0
)