首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
admin
2017-10-12
30
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题
(1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解;
(3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
以上命题中正确的是( )
选项
A、(1)(2).
B、(1)(4).
C、(3)(4).
D、(2)(3).
答案
A
解析
若A
n
α=0,则A
+1
α=A(A
n
α)=A0=0,即若α是(Ⅰ)的解,则α必是(Ⅱ)的解,可见命题(1)正确.
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,A
1
α,A
2
α,…,A
n
α,一方面有:
若kα+k
1
A
1
α+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边,并把A
n+1
α=0,A
n+2
α=0…代入,得kA
n
α=0.由A
n
α≠0知,必有k=0.类似地用A
n-1
左乘可得k
1
=0.因此,α,A
1
α,A
2
α,…,A
n
α线性无关.
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾.故A
n+1
α=0时,必有A
n
α=0,即(Ⅱ)的解必是(Ⅰ)的解.因此命题(2)正确.
所以应选A.
转载请注明原文地址:https://kaotiyun.com/show/KSH4777K
0
考研数学三
相关试题推荐
设f(x)是周期为2的连续函数.证明是周期为2的周期函数.
设矩阵A满足A(E—C-1B)TCT=E+A,其中B=求矩阵A.
设φ1(x),φ2(x),φ3(x)是微分方程y"+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为().
已知α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T,(I)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,证明α1,α2,α3,α4可表示任
设平面区域D={(x,y)|x3≤y≤1,一1≤x≤1},f(x)是定义在[一a,a](a≥1)上的任意连续函数,则=____________·
掷一枚不均匀的硬币,设正面出现的概率为P,反面出现的概率为q=1-p,随机变量X为一直掷到正面和反面都出现为止所需要的次数,则X的概率分布为__________.
设f(x)是区间上的正值连续函数,且,.若把I,J,K按其积分值从小到大的次序排列起来,则正确的次序是
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
求满足初始条件y"+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
设f(x)在[a,b]上有定义,在(a,b)内可导,b—a≥4.求证:∈(a,b),使得f’(ξ)<1+f2(ξ).
随机试题
国家秘密是关系国家安全和利益,依照()确定,在一定时间内只限一定范围的人员知悉的事项。
在Excel2003中,若B4单元格的值为95,则公式“=IF(B4<60,“test”,IF(B4>80,TRUE,B4*2)”的值为_______。
脊髓终丝
A.胃肠道反应 B.二重感染 C.对第八对脑神经损害 D.肾损害 E.过敏性休克四环素最严重的不良反应是
《全国生态环境保护纲要》要求:严禁在()内采矿。
劳务派遣是指劳务派遣机构受特定企业委托招聘员工,并与之签订劳动合同,将员工派遣到企业工作,其劳动过程由企业管理,其工资、福利、社会保险费等由企业提供给派遣机构,再由派遣机构支付给员工,并为员工办理社会保险登记和缴费等事务的一种特殊用工形式。根据上述定义,下
设,其中a,b为常数,则().
请在幻灯片中添加一个笑脸,并利用“绘图”工具栏将其改为圆柱形。
IP地址块222.125.80.128/26包含了(66)个可用主机地址,其中最小地址是(67),最大地址是(68)。
Birth,marriageanddeath:thesearethegreatesteventsinhumanlife.Manythings,goodandbad,canhappentousinourlives
最新回复
(
0
)