首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)α1,α2,α3,α4线性无关,则和(I)等价的向量组是 ( )
设向量组(I)α1,α2,α3,α4线性无关,则和(I)等价的向量组是 ( )
admin
2018-12-21
75
问题
设向量组(I)α
1
,α
2
,α
3
,α
4
线性无关,则和(I)等价的向量组是 ( )
选项
A、α
1
﹢α
2
,α
2
﹢α
3
,α
3
﹢α
4
.
B、α
1
﹢α
2
,α
2
﹢α
3
,α
3
﹢α
4
,α
4
﹢α
1
.
C、α
1
-α
2
,α
2
﹢α
3
,α
3
-α
4
,α
4
﹢α
1
.
D、α
1
,α
1
-α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
.
答案
D
解析
两个向量组可以相互表出
两个向量组等价.
两个向量组等价
等秩,但反之不成立,即等秩不一定等价,但不等秩必不等价.
法一 用排除法.
α
1
,α
1
,α
3
,α
4
线性无关,则r(α
1
,α
2
,α
3
,α
4
)=4.
(A):只有3个向量.r(α
1
﹢α
2
,α
2
﹢α
3
,α
3
﹢α
4
)≤3.(I)和(A)不等价.
(B):因(α
1
﹢α
2
)-(α
2
﹢α
3
)﹢(α
3
﹢α
4
)-(α
4
﹢α
1
1)=0,向量组(B)线性相关.
r(α
1
﹢α
2
,α
2
﹢α
3
,α
3
﹢α
4
,α
4
﹢α
1
)≤3.故(I)和(B)不等价.
(C):(α
1
-α
2
)﹢(α
2
﹢α
3
)-(α
3
-α
4
)一(α
4
﹢α
1
)=0,向量组(C)线性相关.
r(α
1
-α
2
,α
2
﹢α
3
,α
3
-α
4
,α
4
﹢α
1
)≤3.故(I)和(C)也不等价.
由排除法知,应选(D).
法二 对于选项(D),令β
1
=α
1
,β
2
=α
1
-α
2
,β
3
=α
2
-α
3
,
β
4
=α
3
-α
4
,β
5
=α
4
-α
1
,则α
1
=β
1
,α
2
=α
1
-β
2
=β
1
-β
2
,α
3
=α
2
-β
3
=β
1
-β
2
-β
3
,α
4
=α
3
-β
4
=β
1
-β
2
-β
3
-β
4
,
故(I)和(D)可相互表出,是等价向量组,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/L8j4777K
0
考研数学二
相关试题推荐
(2010年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2015年)设矩阵A=,且A3=O(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.
(2004年)微分方程y〞+y=χ2+1+sinχ的特解形式可设为【】
求内接于椭球面=1的长方体的最大体积.
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
求二重积分,直线y=2,y=x所围成的平面区域.
设m和n为正整数,a>0,且为常数,则下列说法不正确的是()
设fn(x)=1一(1一cosx)n,求证:(1)对于任意正整数n,fn(x)=中仅有一根;(2)设有xn∈.
随机试题
颈部恶性肿瘤中,淋巴结转移率约占
A.参与睡眠形成机制B.参与学习与记忆机制C.维持和改变大脑皮质的兴奋状态D.引起特定感觉并激发大脑皮质的传出活动非特异感觉投射系统的主要功能是
A.肾上腺皮质腺瘤B.Cushing病C.Addison病D.单纯性肥胖E.肾上腺皮质腺癌可被大剂量地塞米松抑制
儿童各餐的热能分配应为
引起亚硝酸盐食物中毒最常见的原因是
2004年,某著名百货公司将其拥有的某商场一部分出租给银行,租期5年,剩余部分统一招商和经营管理,对招商引进的商户收取较高的管理费。现该百货公司欲转让该商场而委托评估其转让价格。请问:1.该商场周边近期有较多权利性质相同的临街铺面正常交易的
在投资的过程中,由于政治、经济、技术、自然、心理等众多因素的变化,投资预期效益是不确定的。这反映了投资的<)特点。
报关企业有下列情形之一的,海关可以撤销其注册登记:
北方航空公司实行对教师机票六五折优惠,这实际上是吸引乘客的一种经营策略,该航空公司并没有实际让利,因为当某天某航班的满员率超过90%时,就停售当天优惠价机票,而即使在高峰期,航班的满员率也很少超过90%。有座位空着,何不以优惠价促销它呢。以下哪项如果是真的
电子政务的应用模式主要包括3种,分别是
最新回复
(
0
)