首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,-3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,-3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
admin
2015-05-07
43
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,其中α
1
,α
2
,α
3
,α
4
是4维列向量.若齐次方程组Ax=0的通解是k(1,0,-3,2)
T
,证明α
2
,α
3
,α
4
是齐次方程组A
*
x=0的基础解系.
选项
答案
由解的结构知n-r(A)=1,故秩r(A)=3. 又由[*]=(α
1
,α
2
,α
3
,α
4
)[*]=0,得α
1
-3α
3
+2α
4
=0. 因A
*
A=|A|E=0,即A
*
(α
1
,α
2
,α
3
,α
4
)=0,故α
2
,α
3
,α
4
都是A
*
x=0的解. 由α
1
=3α
3
-2α
4
与r(A)=3有A=(α
1
,α
2
,α
3
,α
4
)=(3α
3
-2α
4
,α
2
,α
3
,α
4
)→(0, α
2
,α
3
,α
4
),可知α
2
,α
3
,α
4
线性无关. 由r(A)=3得r(A
*
)=1,那么n-r(A
*
)=3. 综上可知,α
2
,α
3
,α
4
是A
*
x=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/LY54777K
0
考研数学一
相关试题推荐
设实矩阵A为3阶正交矩阵,其元素a22=1,又3维列向量α=[0,3,0]T,则A-1α=________.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设证明当k>2时,Ak0的充分必要条件为A2=0.
已知3阶矩阵A满足|A-E|=|A-2E|=|A+E|=a,其中E为3阶单位矩阵.当a=0时,求行列式|A+3E|的值;
设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求A.
、问λ为何值时,方程组无解,有唯一解,有无穷多解?并在有无穷多解时写出方程组的通解.
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,k是任意常数,则Ax=0的通解必定是().
设u=f(x,y,z),ψ(x2,ey,z)=0,y=sinx,其中f,ψ具有一阶连续的偏导数,且≠0,求
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求B
计算I=∮Lx2yzdx+(x2+y2)dy+(x+y+1)dz,其中L为球面x2+y2+z2=5与旋转曲面z=1+x2+y2的交线,从z轴负向看为逆时针方向.
随机试题
如图所示,矩形截面对其对称轴y轴的惯性矩Iy及对x、y轴的惯性积Ixy分别为()。
首因效应
A.虎杖B.金钱草C.萹蓄D.通草功能清热解毒,润肠通便的药物是
化脓性中央性颌骨骨髓炎绝大多数发生于下颌骨,其原因是
患儿,男,7岁,昨起发热37.5~38℃,今起出皮疹,主要为红色斑丘疹,分布在头面部和躯干,部分皮疹已形成疱疹。该患儿应隔离到
下列公式中,正确的是()。
被审计单位发生的下列各项业务中,注册会计师认为不会引起应收账款账面价值发生变化的是()。
位于峨眉山的云雾盛景是()。
根据所给图表、文字资料回答81-85题。2008年,全国民政事业基本建设完成投资总额为66.6亿元,施工项目为3906个,完成投资总额比上年增长39.6%。其中国家投资26.6亿元,比上年增长83.4%。在投资总额中,用于优抚安置事业单位投资为9.6亿元
Youmustshowherthesamerespect______(就像你尊重你的母亲那样).
最新回复
(
0
)