首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T, (Ⅰ)若α1,α2,α3线性相关,求a的值; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)当a=3时,证明α1,
admin
2015-05-07
68
问题
已知α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
,
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a的值;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)当a=3时,证明α
1
,α
2
,α
3
,α
4
可表示任一个4维列向量.
选项
答案
(Ⅰ)α
1
,α
2
,α
3
线性相关[*]秩r(α
1
,α
2
,α
3
)<3.由于 [*] 所以a=-3. (Ⅱ)设α
4
=(x
1
,x
2
,x
3
,x
4
)
T
,则有(α
1
,α
4
)=0,(α
2
,α
4
)=0,(α
3
,α
4
)=0,即 [*] 所以α
4
=k(19,-6,0,1)
T
,其中k≠0. (Ⅲ)由于|α
1
,α
2
,α
3
,α
4
| [*] =-12×348k≠0. 所以x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α恒有解,即任一4维列向量必可由α
1
,α
2
,α
3
,α
4
线性表出. 或者由(Ⅰ)知a=3时,α
1
,α
2
,α
3
必线性无关,那么:若 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0, 用[*]左乘上式两端并利用[*]α
1
=[*]α
2
=[*]α
3
=0,有k
4
[*]α
4
=0,又α
4
≠0,故必有k
4
=0. 于是k
1
α
1
+k
2
α
2
+k
3
α
3
=0.由α
1
,α
2
,α
3
线性无关知必有k
1
=0,k
2
=0,k
3
=0,从而α
1
,α
2
,α
3
,α
4
必线性无关.而5个4维列向量必线性相关,因此任一个4维列向量都可由α
1
,α
2
,α
3
,α
4
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/La54777K
0
考研数学一
相关试题推荐
证明行列式
设A为3阶非零矩阵,且满足aij=Aij(i,j=1,2,3),其中Aij为aij的代数余子式,则下列结论中:①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.正确的个数为().
设矩阵,且|A|=-1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
设A为n阶可逆矩阵,a为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
方程组有解的充要条件是________.
设函数f为[0,1]上的连续函数,且0≤f(x)<1,利用二重积分证明不等式:
设x=x(y,z),y=y(z,x),z=z(x,y)均为由方程f(x,y,z)=0所确定的具有连续偏导数的函数,证明x’y·y’x·z’x=一1.
已知反常积分=_______.
求极限:
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。问需要多少时间能将容器注满水。
随机试题
受滑车神经支配的眼肌是:受外展神经支配的眼肌是:
A.1kcalB.4kcalC.7kcalD.9kcalE.11kcal
"自理"学说的提出者是:
《中华人民共和国招标投标法》属于( )的范畴。
“备案号”栏应填()。“包装种类”栏应填()。
施用中国比奈测验应该注意()。
()时,宦官蔡伦集中了前人的经验,用树皮、麻头、敝布、破鱼网造纸,价格低廉,以后全国普遍制造,人们就把这种纸称作“蔡侯纸”。
(2001年试题,七)设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
Clenchingyourfistcouldbeenoughtohelpyougetagriponyourmemory.【F1】Researchsuggeststhatballinguptherighthanda
预定义技术的主要通信工具是定义报告。报告形式有多种,下列哪一种可以表明外部实体、过程和文件之间的数据流动?
最新回复
(
0
)