首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设γ1,γ2,…,γt和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设γ1,γ2,…,γt和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
admin
2019-03-21
38
问题
设γ
1
,γ
2
,…,γ
t
和η
1
,η
2
,…,η
s
分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
选项
答案
充分性 由γ
1
,γ
2
,…,γ
r
,η
1
,η
2
,…,η
s
线性相关,知存在k
1
,k
2
,…,k
r
,l
1
,l
2
,…,l
r
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0, 令ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
,则ξ≠0(否则k
1
,k
2
,…,k
s
,l
1
,l
2
,…,l
s
全为0),且ξ=一l
1
η
1
一l
2
η
2
一…一l
s
η
s
,即一个非零向量ξ既可由γ
1
,γ
2
,…,γ
t
表示,也可由η
1
,η
2
,…,η
s
表示,所以Ax=0和Bx=0有非零公共解. 必要性 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
且ξ=一l
1
η
1
一l
2
η
2
一…一l
s
η
s
,于是,存在k
1
,k
2
,…,k
t
不全为零,存在l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0, 从而γ
1
,γ
2
,…,γ
r
,η
1
,η
2
,…,η
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/M1V4777K
0
考研数学二
相关试题推荐
设y=y(x)是由方程x2一y+1=ey所确定的隐函数,则|x=0=________.
设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则
设函数f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)=
曲线y=渐近线的条数为
函数f(x)=(x2一x一2)|x3一x|的不可导点的个数为
在区间(一∞,+∞)内,方程一cosx=0
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(Ⅰ)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
以下4个命题,正确的个数为()①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞(x)dx=0;②设f(x)在(一∞,+∞)上连续,③若∫-∞+∞f(x)dx与∫-∞+∞g(x)dx都发散,则
积分∫aa+2πcosxln(2+cosx)dx的值
随机试题
大体积混凝土出现的裂缝,具有危害性的有()。
下列关于企业总会计师任命程序的说法正确的是()
歌剧《洪湖赤卫队》,描写土地革命战争时期,一只活跃在地方的赤卫队,在党的领导下同反动派进行斗争,并取得胜利的故事。故事发生地在()省。
材料:周老师是一名乡村幼儿园教师。她所带的班级孩子的父母大部分在外打工,周老师经常在班上组织“娃娃家”游戏。在游戏中,周老师扮演“妈妈”的角色,搂搂这个,亲亲那个,“宝贝”们在“妈妈”的怀里幸福地撒着娇。妮妮常常把小手弄得脏脏的,还喜欢吸吮手指
软件工程学涉及到软件开发技术和工程管理两方面的内容,下述内容中,不属于开发技术范畴的是
Whatarethespeakersdoing?
(Noneofus)had(thefinalsay)inthismatter,and(therefore)itwasrecommendedthatwe(waited)fortheauthorities.
AnalyzingFictionI.【T1】______【T1】______—Arrangementofeventstoa)【T2】_____【T2】______b)Raisethelevelofgeneralityc)【T3
Ofallthingsintheworld,Imostdislikefillingupforms;infact,Ihaveapositivehorrorofit.Applyingforadrivinglic
Onthe20th【D1】______ofthefirstofficialreportonAIDStheheadoftheUnitedNationsAIDSprogrammewarnsthedeadlydiseas
最新回复
(
0
)