首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (I) y”一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ) y”+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ) y"’+y”+y’+y=0的通解.
解下列微分方程: (I) y”一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ) y”+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ) y"’+y”+y’+y=0的通解.
admin
2019-07-19
67
问题
解下列微分方程:
(I) y”一7y’+12y=x满足初始条件y(0)=
的特解;
(Ⅱ) y”+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ) y"’+y”+y’+y=0的通解.
选项
答案
(I)对应齐次方程的特征方程为λ
2
一7λ+12=0,它有两个互异的实根λ
1
=3与λ
2
=4,所以,其通解为[*]=C
1
e
3x
+C
2
e
4x
,其中C
1
与C
2
是两个任意常数. 由于0不是特征根,所以非齐次微分方程的特解应具有形式y*(x)=Ax+B.代入方程可得A=[*]所以,原方程的通解为[*] 代入初始条件,则得[*] 因此所求的特解为[*] (Ⅱ)由于对应齐次微分方程的特征根为±ai,所以其通解为y(x)=C
1
cosax+C
2
sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程可得 [*] 所以,通解为[*]+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程可得 [*] 原方程的通解为y(x)=[*]+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=一1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/O8c4777K
0
考研数学一
相关试题推荐
设函数f’(x)在[a,b]上连续,且f(a)=0,证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
求极限,ai>0,且ai≠1,i=1,2,…,n,n≥2.
若f(x)在开区间(a,b)内可导,且x1,x2是(a,b)内任意两点,则至少存在一点ξ,使下列诸式中成立的是()
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)—f(y)|≤M|x—y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当|k|>1时,f(x)=常数.
将函数f(x)=x-1(0≤x≤2)展开成周期为4的余弦级数.
求函数在点P(一1,3,一3)处的梯度以及沿曲线x=一t2,y=3t2,z=一3t2在点P参数增大的切线方向的方向导数.
将下列函数展开为x的幂级数.f(x)=ln(1+x+x2+x3)
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
求不定积分
随机试题
A.依那普利B.美托洛尔C.氢氯噻嗪D.特拉唑嗪E.氨氯地平糖尿病合并高血压的患者首选的降压药物是()
会导致爆炸性气体的爆炸极限范围变大的条件是()。
关于当代世界城市化进程表述错误的是()。
什么是压实度()
城市轨道交通工程施工时,应确保下车乘客到就近通道或楼梯口的最大距离不超过()m。
实现劳动者与生产资料结合并完成劳动过程是劳动关系的()。
()是继计算机、互联网与移动通信网之后世界信息产业的第三次浪潮。
企业目标
法律规范所规定的,能够引起法律关系产生、变更或消灭的客观情况或现象是()。
Thousandsofyearsagomanusedhandyrocksforhissurgicaloperations.Laterheusedsharpboneorhorn,metalknivesand,mor
最新回复
(
0
)