首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (I) y”一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ) y”+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ) y"’+y”+y’+y=0的通解.
解下列微分方程: (I) y”一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ) y”+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ) y"’+y”+y’+y=0的通解.
admin
2019-07-19
66
问题
解下列微分方程:
(I) y”一7y’+12y=x满足初始条件y(0)=
的特解;
(Ⅱ) y”+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ) y"’+y”+y’+y=0的通解.
选项
答案
(I)对应齐次方程的特征方程为λ
2
一7λ+12=0,它有两个互异的实根λ
1
=3与λ
2
=4,所以,其通解为[*]=C
1
e
3x
+C
2
e
4x
,其中C
1
与C
2
是两个任意常数. 由于0不是特征根,所以非齐次微分方程的特解应具有形式y*(x)=Ax+B.代入方程可得A=[*]所以,原方程的通解为[*] 代入初始条件,则得[*] 因此所求的特解为[*] (Ⅱ)由于对应齐次微分方程的特征根为±ai,所以其通解为y(x)=C
1
cosax+C
2
sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程可得 [*] 所以,通解为[*]+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程可得 [*] 原方程的通解为y(x)=[*]+C
1
cosax+C
2
sinax,其中C
1
,C
2
是两个任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=一1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/O8c4777K
0
考研数学一
相关试题推荐
设f(x)在x=0处二阶可导,f(0)=0且=2,则().
在曲线y=e-x(x≥0)上求一点,使过该点的切线与两坐标轴所围平面图形的面积最大,并求出最大面积.
求(x+2)y’’+xy’2=y’的通解.
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有目仅有一个根.
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本.(Ⅰ)求使得f(x;μ,σ2)dx=0.05的点a的最大似然估计,其中f(x;μ,σ2)是X的概率密度;(Ⅱ)求P{X≥2}的最大似然估计.
n元线性方程组AX=b有唯一解的充要条件为()
一汽车沿一街道行驶,需要通过三个设有红绿信号灯的路口,每个信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为,以X表示该汽车首次遇到红灯前已通过的路口的个数,求X的概率分布.
曲面上任何点处的切平面在各坐标轴上的截距之和为__________。
有一椭圆形薄板,长半轴为a,短半轴为b,薄板垂直立于水中,而其短半轴与水面相齐,求水对薄板的侧压力.
随机试题
A.异烟肼B.利福平C.吡嗪酰胺D.乙胺丁醇(2015年第142题)对结核分枝杆菌B菌群作用最强的药物是
A.养血活血B.补血益气C.行气养血D.活血止痛E.活血化瘀,散寒止痛产后腹痛气血两虚证的治法是
在一段时间内,在一定数目的危险单位中,可能遭受的损失次数或程度,通常以分数或百分数来表示的是()。
北宋陵葬有北宋9个皇帝。()
对任意实数a、b、c,定义运算a*b*c=ab—bc+ca,若1*x*2=2,则x=()。
损益相抵[复旦大学2020年研]
Imagineaworldinwhichweareassignedanumberthatindicateshowinfluentialweare.Thisnumberwouldhelpdetermine【C1】___
“在课程关系COURSE中,增加一门课程:(‘C01’,‘电子商务’,‘陈伟钢’)。,用关系代数表达式表示为:COuRsE+_-COuRsEu{(‘C01’,‘电子商务’,‘陈伟钢’)}。这是使用扩展关系操作中的
A、Becauseheisinterestedinthesubject.B、Becausehehasalreadywrittenapaperonit.C、Becausehedoesnotknowanythinga
TheTruthabouttheEnvironmentA)Formanyenvironmentalists,theworldseemstobegettingworse.Theyhavedevelopedahit-lis
最新回复
(
0
)