首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k; (2)求(1)中的∫0x(t)dt; (3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k; (2)求(1)中的∫0x(t)dt; (3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
admin
2016-06-25
40
问题
(1)设f(x)是以T为周期的连续函数,试证明:∫
0
x
f(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;
(2)求(1)中的
∫
0
x
(t)dt;
(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
∫
0
x
g(t)dt。
选项
答案
(1)令φ(x)=∫
0
x
f(t)dt一kx,考查 φ(x+T)一φ(x)=∫
0
x+T
f(t)dt一k(x+T)一∫
0
x
f(t)dt+kx =∫
0
T
f(t)dt+∫
T
x+T
f(t)dt—∫
0
x
f(t)dt—kT. 对于其中的第二个积分,作积分变量代换,令t=u+T,有 ∫
T
x+T
f(t)dt=∫
0
x
f(u+T)du=∫
0
x
f(u)du, ① 于是 φ(x+T)一φ(x)=∫
0
T
f(t)dt一kT。 可见,φ(x)为T周期函数的充要条件是 [*]
解析
(1)证明能取到常数k使∫
0
x
ft)dt一kx为周期T即可.(1)得到的表达式去求
∫
0
x
f(t)出即可得(2).但请读者注意,一般不能用洛必达法则求此极限,除非f(x)恒为常数.对于(3),由于g(x)不连续,如果要借用(1)的结论,需要更深一层的结论.由于g(x)可以具体写出它的分段表达式,故可直接积分再用夹逼定理即得。
转载请注明原文地址:https://kaotiyun.com/show/OIt4777K
0
考研数学二
相关试题推荐
设y=y(x)二阶可导,且y′≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程d2x/dy2+(y+sinx)(dx/dy)3=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y′(
设二阶常系数线性微分方程y″+ay′+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设有微分方程y′-2y=φ(x),其中φ(x)=在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤k/a(eax-1).
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ′(u)连续,且φ′(u)≠1,求P(y)
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
求下列不定积分。
设f(x)和ψ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,ψ(x)有间断点,则
设f(x)为连续函数,且,则F’(x)=________。
设f(x)是[0,1]上的连续函数,证明:∫0πxf(sinx)dx=∫0πf(sinx)dx并由此计算.
随机试题
该病人首先考虑诊断如果发现髋臼后缘骨块大小1.5cm×1.0cm,处理方法为
一般认为与风湿病发病有关的病原为
ARDS的临床特点
剖宫产术前准备,哪项错误
为了满足建设工程项目施工成本管理的要求,项目成本项编码时应考虑的因素包括( )。
接上题,离婚后,小张可以分得()万元的房屋利益。
用人单位招用劳动者时,应当如实告知劳动者工作内容、工作条件、工作地点、职业危害、安全生产状况、劳动报酬,以及劳动者要求了解的其他情况。()
公平交易权的核心是旅游消费者付出一定旅游费用,获得等值的旅游商品或服务。()
民法宣告失踪的概念和效力。[河北师大2020年研]
Thefirststepinwisecarcareandserviceistobuyacarthatisinperfectcondition.Lookthecarovercarefullytomakesu
最新回复
(
0
)