首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证:存在两点ξ,η∈(a,b),使得 (e2a+ea+b+e2b)[f(ξ)+f’(ξ)]=3e3η—ξ.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证:存在两点ξ,η∈(a,b),使得 (e2a+ea+b+e2b)[f(ξ)+f’(ξ)]=3e3η—ξ.
admin
2019-01-05
33
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证:存在两点ξ,η∈(a,b),使得
(e
2a
+e
a+b
+e
2b
)[f(ξ)+f’(ξ)]=3e
3η—ξ
.
选项
答案
令g(x)=e
3x
,则g(x)=e
3x
在[a,b]上满足拉格朗日中值定理条件. 由拉格朗日中值定理,存在点η∈(a,b),使得 [*] 令F(x)=e
x
f(x),由拉格朗日中值定理,存在点ξ∈(a,b),使得 [*] 代入①式,可得(e
2a
+e
a+b
+e
2b
)[f(ξ)+f’(ξ)]=3e
3η—ξ
.
解析
(e
2a
+e
a+b
+e
2b
)[f(ξ)+f’(ξ)]=3e
3η—ξ
→(e
2a
+e
a+b
+e
2b
)e
ξ
[f(ξ)+f’(ξ)]=3e
3η
→(e
2a
+e
a+b
+e
2b
)[e
x
(x)]’|
x=ξ
=(e
3x
)|
x=η
,
先对g(x)=e
3x
用拉格朗日中值定理,再对F(x)=e
x
f(x)用拉格朗日中值定理,然后乘以常数(e
2a
+e
a+b
+e
2b
)可得待证的等式.
转载请注明原文地址:https://kaotiyun.com/show/OgW4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,其中0<a<b,试证至少存在一点ξ∈(a,b),使得alnb一blna=(ab2—ba2)
1极限式中含幂指函数(l+xlnx),首先用换底法将其化为以e为底的指数函数.
设数列{xn}由递推公式确定,其中a>0为常数,x0是任意正数,试证存在,并求此极限.
转化为适当的函数极限.令[*],则[*]
用当x→0时的等价无穷小替换ex一1~x与ln(1+x)~x化简所求极限.[*]
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时以φ(x)为极限的是
(97年)在经济学中,称函数Q(χ)=为固定替代弹性生产函数,而称函数=AKδL1-δ为Cobb-Douglas生产函数,(简称C-D生产函数).试证明:当χ→0时,固定替代弹性生产函数变为C-D生产函数,即有
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=都是μ的无偏估计.并确定a、b,使D(T)达到最小.
随机试题
试述平均利润的形成及本质。
神经兴奋时,首先产生扩布性动作电位的部位是
苯二氮革类药物作用特点为
下列说法错误的是()
对冲击性负荷供电需要降低冲击性负荷引起的电网电压波动和电网闪变时,宜采取下列哪些措施?()
施工成本计划作为施工成本控制的依据,应包括的重要内容是()。
()是指商业银行在贷款发放以后所开展的信贷风险管理工作。
甲工业企业设有供电、锅炉两个辅助生产车间,6月份供电车间直接发生的费用为126000元,锅炉车间直接发生的费用为60000元。本月辅助生产劳务供应通知单内容如下:供电车间共提供240000度电,其中,锅炉车间耗用18000度,第一生产车间产品耗用
2015年全国人大会议召开期问,公安机关以涉嫌发生在两年前的诈骗罪逮捕了全国人大代表甲。下列表述中正确的是()
Windows98支持目前流行的多种多媒体数据文件格式。下列哪一组中的文件格式(类型)均表示视频文件?
最新回复
(
0
)