首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
admin
2022-09-05
84
问题
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
选项
A、在(1-δ,1)和(1,1+δ)内均有f(x)<x
B、在(1-δ,1)和(1,1+δ)内均有f(x)>x
C、在(1-δ,1)内,f(x)<x,在(1,1+δ)内,f(x)>x
D、在(1-δ,1)内,f(x)>x,在(1,1+δ)内,f(x)<x
答案
A
解析
设F(x)=f(x)-x,则 F(1)=f(1)-1=0.
F’(x)=f’(x)-1,
F’(1)=f’(1)-1=0.
F"(x)=f"(x),由f’(x)在(1-δ,1+δ)内严格单调减少知F "(x)<0.从而F’(x)在(1-δ,1+δ)内单调减少,即x∈(1-δ,1)时,F’(x)>F’(1)=0;x∈(1,1+δ)时,F’ (x)<F (1)=0.
当x∈(1-δ,1)时,由F’(x)>0知F(x)单增,即F(x)<F(1)=0,也即f(x)<x;
当x∈(1,1+δ)时,由F’(x)>0知F(x)单减,即F(x)<F(1)=0,也即f(x)<x.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/OwR4777K
0
考研数学三
相关试题推荐
若事件A1,A2,A3两两独立,则下列结论成立的是().
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f’”(ξ)=3.
设f(x)在[a,+∞)上二阶可导,f(a)<0,f’(a)=0,且f”(x)≥k(k>0),则f(x)在(a,+∞)内的零点个数为().
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
已知当x→0时,f(x)=arcsinx-ar2019m12x/ctanax与g(x)=bx[x-ln(1+x)]是等价无穷小,则()
从总体N(100,4)中抽取样本容量为16的简单随机样本,样本均值为已知求k的值.
求球体x2+y2+z2=4a2被柱面x2+y2=2ax(a>0)所截得的含在圆柱面内的那部分立体的体积.
求下列极限:
设函数f(x)处处可导,且又设x0为任意一点,数列{xn}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
设y=y(x)可导,y(0)=2,令△y=y(x+△x)-y(x),且其中a是当△x→0时的无穷小量,则y(x)=__________.
随机试题
固定式龙门铣床水平铣头在立柱上垂直移动(W轴线)对垂直铣头移动(Y轴线)的垂直度超差时如何调整?
关于胸大肌的位置、起止和作用的叙述正确的是【】
术前常规禁食的主要目的是
医师在执业活动中除正当治疗外,不得使用
由于架子工把脚手板铺得太差而加以修正的时间属于()。
( )是指股票的市场价格反映影响股票价格信息的充分程度。
《本草纲目拾遗》中记叙了“强水”,写道:“性最烈,能蚀五金……其水甚强,五金八石皆能穿滴,惟玻璃可盛。”这里的“强水”是指()。
“给定资料”结尾写道:“我们或许应该如作家米兰.昆德拉所言,要“慢下来’,因为自在有为的生活是急不得的。”请结合你对这句话的思考,联系自己的感受和社会实际,自拟题目,写一篇文章。要求:(1)自选角度,见解深刻;(2)参考“给定
下列著名宫殿与所在国家对应不正确的是()。
在社会主义社会个人收入实行按劳分配的原则,是马克思主义的一项基本原理。对这一原理的基本内涵理解正确的是()。
最新回复
(
0
)