首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
admin
2022-09-05
35
问题
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
选项
A、在(1-δ,1)和(1,1+δ)内均有f(x)<x
B、在(1-δ,1)和(1,1+δ)内均有f(x)>x
C、在(1-δ,1)内,f(x)<x,在(1,1+δ)内,f(x)>x
D、在(1-δ,1)内,f(x)>x,在(1,1+δ)内,f(x)<x
答案
A
解析
设F(x)=f(x)-x,则 F(1)=f(1)-1=0.
F’(x)=f’(x)-1,
F’(1)=f’(1)-1=0.
F"(x)=f"(x),由f’(x)在(1-δ,1+δ)内严格单调减少知F "(x)<0.从而F’(x)在(1-δ,1+δ)内单调减少,即x∈(1-δ,1)时,F’(x)>F’(1)=0;x∈(1,1+δ)时,F’ (x)<F (1)=0.
当x∈(1-δ,1)时,由F’(x)>0知F(x)单增,即F(x)<F(1)=0,也即f(x)<x;
当x∈(1,1+δ)时,由F’(x)>0知F(x)单减,即F(x)<F(1)=0,也即f(x)<x.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/OwR4777K
0
考研数学三
相关试题推荐
设u=f(x,y,xyz),函数z=z(x,y)由exyz=(xy+z-t)dt确定,其中f连续可偏导,h连续,求x-y.
若事件A1,A2,A3两两独立,则下列结论成立的是().
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
设A=,求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
求函数f(x)=ln(1-x-2x2)的幂级数,并求出该幂级数的收敛域.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,试证α1,α2,α3线性无关.
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
比较积分值的大小:设I=cos(x2+y2)dσ,其中D={(x,y)|x2+y2≤1},则
∫arcsinxarccosxdx.
随机试题
诸葛亮作“隆中对”,帮助刘备策划三分天下的大计,这属于()
不定积分∫dx=_______.
下列各项中,不属于“佐药”功用范畴的是()
肺结核诊断最可靠的依据是
热力发电厂中,汽轮机是将_________的旋转式原动机()
在洛阳游览时,旅游团中一位旅游者提出其当地一位亲戚想随团游览,导游员应首先()
根据归因理论,如果一个人把成功归因于外部因素,会产生自豪感。()
ClassA是一个类,现在执行下面语句:ClassAa[2],*b[2],*c=newClassA;调用ClassA类的构造函数的次数是
Whatarethoseofuswhohavechosencareersinscienceandengineeringabletodoaboutourcurrentproblems?First,wecan
Forthispart,youareallowed30minutestowriteacompositiononthetopicSocialPracticeofCollegeStudents.Youshouldwr
最新回复
(
0
)