首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
admin
2022-09-05
81
问题
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。
选项
A、在(1-δ,1)和(1,1+δ)内均有f(x)<x
B、在(1-δ,1)和(1,1+δ)内均有f(x)>x
C、在(1-δ,1)内,f(x)<x,在(1,1+δ)内,f(x)>x
D、在(1-δ,1)内,f(x)>x,在(1,1+δ)内,f(x)<x
答案
A
解析
设F(x)=f(x)-x,则 F(1)=f(1)-1=0.
F’(x)=f’(x)-1,
F’(1)=f’(1)-1=0.
F"(x)=f"(x),由f’(x)在(1-δ,1+δ)内严格单调减少知F "(x)<0.从而F’(x)在(1-δ,1+δ)内单调减少,即x∈(1-δ,1)时,F’(x)>F’(1)=0;x∈(1,1+δ)时,F’ (x)<F (1)=0.
当x∈(1-δ,1)时,由F’(x)>0知F(x)单增,即F(x)<F(1)=0,也即f(x)<x;
当x∈(1,1+δ)时,由F’(x)>0知F(x)单减,即F(x)<F(1)=0,也即f(x)<x.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/OwR4777K
0
考研数学三
相关试题推荐
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ”(y).
设f(x,y)=问:f(x,y)在点(0,0)处是否连续?
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f”(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
求函数f(x)=ln(1-x-2x2)的幂级数,并求出该幂级数的收敛域.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设A=,B=,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
曲线的渐近线条数为()
设某种商品每周的需求量X是服从区间[10,30]上均匀分布的随机变量,而经销商店进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商
对于任意二事件A,B,0<P(A)<1,0<P(B)<1,定义A与B的相关系数为证明事件A,B相互独立的充分必要条件是其相关系数为零;
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(esin2x一1)ln(1+x2)低阶的无穷小,则正整数n等于()
随机试题
法国地方市镇行政组织的市长具有两种身份,即()
增感屏的作用是
2019年4月,某市税务机关拟对辖区内某房地产开发公司开发的房地产项目进行土地增值税清算。该房地产开发公司提供该房地产开发项目的资料如下: (1)2017年4月,以8000万元拍得用于该房地产开发项目的一宗土地,并缴纳契税;因闲置1年,支付土
DBM的郭士纳和美国西南航空公司的赫伯都是公司的领导人,其领导情境和领导方式均不同,但都获得了很大成功。领导()理论可以解释这一现象。
下列各项中,不属于业务预算的是()。
为保护少年儿童的社会权利,1989年联合国大会通过了()
在2016年举世瞩目的人机大战中,谷歌围棋人工智能AlphaGo与韩国棋手李世石进行巅峰人机对决,最终AlphaGo以4:1赢得最终胜利。这表明()
文化强则中国强。建设社会主义文化强国是实现中华民族伟大复兴的必然要求,其关键是
Humansnotonlyloveeatingicecream,theyenjoy(1)_____ittotheirpets.Marketstudiesshowthattwothirdsofalldogowne
以下关于拒绝服务攻击的叙述中,不正确的是_______。
最新回复
(
0
)