首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
admin
2018-12-29
49
问题
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0。试证明至少存在一点ξ∈(a,b),使
选项
答案
(1)若f(x)[*] 0,则结论显然成立; (2)设|f(x
0
)|=[*],x
0
∈(a,b),即函数f(x)在x=x
0
处取得最大值。又因为f(x)在[a,b]上二阶可导,则有f′(x
0
)=0。将函数f(x)在x=x
0
处展成带有拉格朗日余项的二阶泰勒展开式,即 f(x)=f(x
0
)+f′(x
0
)(x—x
0
)+[*](x—x
0
)
2
,η=x
0
+θ(x—x
0
),0<θ<1。 由于f(a)=0,故将x=a代入上式可得 0=f(a)=f(x
0
)+f′(x
0
)(a—x
0
)+[*](a—x
0
)
2
, 即 [*],a<ξ
1
<x
0
。 同理,有 [*],x
0
<ξ
2
<b。 令[*],则 [*] 上式中[*],当且仅当x
0
=[*]时,等号成立。 故至少在一点ξ∈(a,b)使|f″(ξ)|≥[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/PUM4777K
0
考研数学一
相关试题推荐
(07年)如图.连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是
(90年)设f(x)是连续函数,且F(x)=,则F’(x)等于
(16年)设函数y(x)满足方程y"+2y’+ky=0,其中0<k<1.(I)证明:反常积分∫0+∞y(x)dx收敛;(Ⅱ)若y(0)=1,y’(0)=1,求∫0+∞y(x)dx的值.
(07年)二阶常系数非齐次线性微分方程y"一4y’+3y=2e2x的通解为y=________.
设A,B,C是两两相互独立且三事件不能同时发生的事件,且P(A)=P(B)=P(C)=x,则使P(A∪B∪C)取最大值的x为()
已知抛物线y=ax2+bx(其中a0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S,问当a,b为何值时,S最大?最大值是多少?
设f(x),g(x)在点x=0的某邻域内连续,且f(x)具有一阶连续导数,并有求f’(x)=一2x2+∫0xg(x一t)dt的拐点.
设x=(xij)3×3.问a,b,c取何值时,矩阵方程AX=B有解?并在有解时求出全部解.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
求函数f(x)=∫0x2(2一t)e-tdt的最大值与最小值.
随机试题
在稳定流动过程中,流体流经各等截面处的体积流量相等。()
关于第一期梅毒的叙述,正确的有
民用建筑工程设计一般应分为()。
关于多层民用住宅工程造价与其影响因素的关系,下列说法中正确的是()。【2013年真题】
操作系统的作用是()。
关于审计工作底稿的存在形式,以下陈述中,恰当的是()。
正常婴儿主要依靠何种感觉定位?()
根尖基点
在窗体中添加一个名称为Commandl的命令按钮,然后编写如下事件代码:PrivateSubCommandl_Click()MsgBoxf(24,18)EndSubPublicFunctionf(mAsInteger,
Oneofthebiggestchangessince1990isthedegreetowhichbioterrorismhasbecomeapublichealthpriority.Althoughthereha
最新回复
(
0
)