首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2一x一2)|x3一x|的不可导点有
函数f(x)=(x2一x一2)|x3一x|的不可导点有
admin
2018-11-21
31
问题
函数f(x)=(x
2
一x一2)|x
3
一x|的不可导点有
选项
A、3个.
B、2个.
C、1个.
D、0个.
答案
B
解析
函数|x|,|x一1|,|x+1|分别仅在x=0,x=1,x=一1不可导且它们处处连续.因此只需在这些点考察f(x)是否可导.
用上题的结论来判断.f(x)=(x
2
一x一2)|x||x一1||x+1|,只需考察x=0,1,一1是否可导.
考察x=0,令g(x)=(x
2
一x一2)|x
2
一1|,则f(x)=g(x)|x|,g’(0)存在,g(0)≠0,φ(x)=|x|在x=0连续但不可导,故f(x)在x=0不可导.
考察戈=1,令g(x)=(x
2
一x一2)|x
2
+x|,φ(x)=|x一1|,则g’(1)存在,g(1)≠0,φ(x)在x=1连续但不可导,故f(x)=g(x)φ(x)在x=1不可导.
考察x=一1,令g(x)=(x
2
一x一2)|x
2
一x|,φ(x)=|x+1|,则g’(一1)存在,g(一1)=0,φ(x)在x=一1连续但不可导,故f(x)=g(x)φ(x)在x=一1可导.因此选B.
转载请注明原文地址:https://kaotiyun.com/show/Ppg4777K
0
考研数学一
相关试题推荐
设S为椭球+z2=1的上半部分,已知S的面积为A,则第一类曲面积分(4x2+9y2+36z2+xyz)dS=_____________.
设A,B均为n阶实对称矩阵,则A与B合同的充分必要条件是().
设曲线y=ax2(x≥0,常数a>0)与曲线y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D。(Ⅰ)求D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)求a的值,使V(a)为最大。
交换积分次序=______。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=tsαs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
半圆形闸门半径为R米,将其垂直放入水中,且直径与水面齐平,设水的比重ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P=()
已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段,计算曲线积分3x2ydx+(x3+x-2y)dy。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是________。
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
随机试题
预防口腔癌应定期检查的对象是40岁以上,吸烟量约为
债券的发行方式主要有()。
下列各项中,不属于我国地税系统主要负责征收和管理的是()。
案例:下面为一道物理习题和某同学的解答过程。问题:给出该习题的正确解答。
课程是衡量教学质量的重要“尺度”,离开这个“尺度”就无法评定教学质量的优劣。()
取保候审时犯罪嫌疑人、被告人提出保证人的,就不必交纳保证金。()
西方文化是人类文化发展史上一颗璀璨的明珠,以下作品的作者身为同一个国家的是()。①《神曲》②《最后的晚餐》③《飞鸟集》④《唐璜》⑤《十日谈》
(1)试样确认(2)客户资料图纸(3)图形确认(4)交货(5)模具装配
我国数学家华罗庚在一次报告中以“一支粉笔多长为好”为例来讲解他所倡导的优选法。对此,他解释道:“每只粉笔都要丢掉一段一定长的粉笔头,单就这一点来说,愈长愈好。但太长了,使用起来很不方便,而且容易折断。每断一次,必然多浪费一个粉笔头,反而不合适。因而就出现了
Whatwouldacoolingtrendinweatherbringtotheworld?
最新回复
(
0
)