首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
设α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
admin
2019-08-11
67
问题
设α
1
=(1,3,5,—1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,—1,7)
T
.
①若α
1
,α
2
,α
3
线性相关,求a.
②当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
.
③设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
选项
答案
①α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3. (α
1
,α
2
,α
3
)= [*] 得a=—3. ②与α
1
,α
2
,α
3
都正交的非零向量即齐次方程组 [*] 的非零解,解此方程组: [*] 解得α
4
=c(19,—6,0,1)
T
,c≠0. ③只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关, 从而α可以用α
1
,α
2
,α
3
,α
4
线性表示. 方法一 由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设(4=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
) =0. 得α
4
=0,与α
4
是非零向量矛盾. 方法二 计算行列式 | α
1
,α
2
,α
3
,α
4
| [*] 于是α
1
,α
2
,α
3
,α
4
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q0J4777K
0
考研数学三
相关试题推荐
已知总体X服从瑞利分布,其密度函数为X1,…,Xn为取自总体X的简单随机样本,求θ的矩估计量.
设总体X服从正态分布N(0,σ2),而X1,X2,…,X15是取自总体X的简单随机样本,则服从___________分布,分布参数为___________.
试求多项式p(x)=x2+ax+b,使积分∫-11p2(x)dx取最小值.
设A是秩为2的3阶实对称矩阵,且A2+5A=0,则A的特征值是___________.
矩阵A=合同于
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒中,最后从丙盒内再任取1个球,试求:若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
设X1,X2,…,Xn兄是来自总体X的简单随机样本.已知EXk=ak(k=1,2,3,4),证明当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
设总体X的概率密度为f(χ)=e-|χ|(-∞<χ<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则ES2_______.
设A为n阶方阵,秩(A)=r<n,且满足A2=2A,证明:A必相似于对角矩阵.
随机试题
左向右分流型先心病最常见的合并症是
硝苯地平治疗高血压引起踝部水肿的原因可能是
混凝土表层损坏的原因有()。
证券公司自营业务只能买卖依法公开发行的证券。( )
中国古代小说始于魏晋南北朝时期。这一时期的志怪小说和笔记体小说极有特色,代表作是干宝的《世说新语》和刘义庆的《搜神记》。()
简述学前儿童眼睛特点和用眼卫生。
以下选项相比较,粮食和肉类产量最大的省区是()。
旅游胜地名泉多,仅“天下第一泉”就有四处。而被《神州名泉》一书列为“天下第一泉”的名泉竟达十处。到底谁是第一,恐怕陆羽再世,也会感到__________的。填入横线处的词语,最恰当的一项是()。
以下哪一个不是封建教育衰败的表现()
国际贸易政策包括哪两种基本类型?各国制定对外贸易政策的目的是什么?
最新回复
(
0
)