首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
设α1=(1,3,5,—1)T,α2=(2,7,a,4)T,α3=(5,17,—1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
admin
2019-08-11
68
问题
设α
1
=(1,3,5,—1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,—1,7)
T
.
①若α
1
,α
2
,α
3
线性相关,求a.
②当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
.
③设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
选项
答案
①α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3. (α
1
,α
2
,α
3
)= [*] 得a=—3. ②与α
1
,α
2
,α
3
都正交的非零向量即齐次方程组 [*] 的非零解,解此方程组: [*] 解得α
4
=c(19,—6,0,1)
T
,c≠0. ③只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关, 从而α可以用α
1
,α
2
,α
3
,α
4
线性表示. 方法一 由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设(4=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
) =0. 得α
4
=0,与α
4
是非零向量矛盾. 方法二 计算行列式 | α
1
,α
2
,α
3
,α
4
| [*] 于是α
1
,α
2
,α
3
,α
4
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q0J4777K
0
考研数学三
相关试题推荐
已知总体X的密度函数为其中θ,β为未知参数,X1,…,Xn为简单随机样本,求θ和β的矩估计量.
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
一大袋麦种的发芽率为80%,从中任意取出500粒进行发芽试验,计算其发芽率的偏差不超过2%的概率.
试求多项式p(x)=x2+ax+b,使积分∫-11p2(x)dx取最小值.
设函数f(x,y)=,且g有二阶导数,求证:,且r>0.
设f(x,y)=|x一y|φ(x,y),其中φ(x,y)在点(0,0)处连续且φ(0,0)=0,则f(x,y)在点(0,0)处
已知A~B,A2=A,证明B2=B.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:Xi,Yi(i=1,2)的边缘概率密度;
设二维随机变量(X,Y)在区域D={(x,y)|0≤y≤1,y≤x≤y+1}内服从均匀分布,求边缘密度函数,并判断X,Y的独立性.
设A为m阶方阵,B为n阶方阵,且|A|=a,|B|=b,C=,则|C|=_______.
随机试题
下列哪支动脉,不是大脑动脉环的组成部分
心室肌的后负荷是指
以下除哪项外,均为小儿急性肾小球肾炎的诊断标准()
25岁初孕妇,停经18周,不觉胎动。产科检查:宫底高度在脐耻之间,胎方位及胎心不清。监测宫内胎儿情况首选的方法是()。
直径为D的实心圆轴,两端受扭转力矩作用,轴内最大剪应力为τ。若轴的直径改为D/2,则轴内的最大剪应力应为:
下列有关分析程序的说法中,正确的是()。
A.WearereadyatyourserviceB.ThecomputerisworkingC.itprovidesyouwithfreeserviceandpartsA:There!Hereweare.
贬值
设随机变量X服从参数为2的指数分布,则随机变量Y=min{X,2}的分布函数().
A、 B、 C、 D、 B
最新回复
(
0
)