首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=(c-a1)(c-a2)…(c-an)/n!f(n)(ξ).
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=(c-a1)(c-a2)…(c-an)/n!f(n)(ξ).
admin
2022-10-09
54
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得f(c)=(c-a
1
)(c-a
2
)…(c-a
n
)/n!f
(n)
(ξ).
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立;设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<a
2
<…<a
n
.令k=f(c)/(c-a
1
)(c-a
2
)…(c-a
n
),构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0,由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ’(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0,再由罗尔定理,存在ξ∈(c
1
,c
2
)∈(a
1
,a
n
),使得φ
(n)
(ξ)=0.而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(x)=n!k,从而有f(x)=(c-a
1
)(c-a
2
)…(c-a
n
)/n!f
(n)
(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/QOR4777K
0
考研数学三
相关试题推荐
边缘分布均为正态分布的二维随机变量其联合分布()
已知求
设函数f(x)连续,且已知f(1)=1,求的值.
设函数则曲线y=f(x)与x轴所围成的平面图形的面积为___________.
设随机变量X在1,2,3,4四个数字中等可能取值,随机变量Y在1~X中等可能地取一整数值.求(X,Y)的概率分布;
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是()
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设函数又已知f′(x)连续,且f(0)=0.求A的值,使F(x)在x=0处连续;
设(X,Y)服从二维正态分布,则下列说法不正确的是().
随机试题
怎样进行数控车床的返回参考点操作?
李密的《陈情表》是一篇()
胆碱酯酶复能剂治疗有机磷农药中毒的作用是
以下各项目属于会计科目的有()。
物业服务企业超越资质等级承接物业管理业务的,由县级以上地方人民政府房地产主管部门予以警告,责令限期改正,并处()的罚款。
一个好的班集体具有哪些特征?()
当被冠以“聪明人”称号时.很多人都会认为那些难题到你手里便会__________。如果遇到难题,周围的人便会将目光集中到你身上.并将你看作那只“会下金蛋的鹅”。只要你__________流露出一丝为难之情,人们就会说:“哎哟,我还以为你很聪明呢!”如果你失
党的十八大明确提出了培育和践行社会主义核心价值观的根本任务,强调要倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善。其中,属于个人层面的价值要求是()
迪杰斯特拉(Dijkstra)算法用于求解图上的单源点最短路径。该算法按路径长度递增次序产生最短路径,本质上说,该算法是一种基干______策略的算法。
It’ssometimesthoughtthatthelongingformaterialgoods,theneedtobuythings,isarelativelymoderninvention,butinfac
最新回复
(
0
)