首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2, a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2, a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何
admin
2019-06-28
46
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2, a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
由于行列式|α
1
,α
2
,α
3
|= a+1,故当a≠一1时,秩[α
1
,α
2
,α
3
]=3.方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)有解(且有唯一解),所以向量组(Ⅱ)可由向景组(Ⅰ)线性表示;又由行列式|β
1
,β
2
,β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.故当a≠一1时,(Ⅰ)与(Ⅱ)等价.当a=一1时,由于秩[α
1
,α
2
,α
3
]≠秩[α
1
,α
2
,α
3
|β
1
],故方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由向量组(Ⅰ)线性表示,所以(Ⅰ)与(Ⅱ)不等价. 若(Ⅰ)与(Ⅱ)等价,则秩(I)一秩(Ⅱ),而秩(Ⅱ)一3,故秩(1) 一3,[*]|α
1
,α
2
,α
3
|=a+1≠0,[*]a≠一1;反之,若a≠一1,则(Ⅰ)和(Ⅱ)都是线性无关组,而α
1
,α
2
,α
3
,β
i
线性相关(4个3维向量必线性相关),[*]β
i
可由α
1
,α
2
,α
3
线性表示(i=1.2,3),同理知=
j
可由β
1
,β
2
,β
3
线性表示(j=1,2,3),故(Ⅰ)与(Ⅱ)等价,综上可知,(Ⅰ)与(Ⅱ)等价[*]a≠一1.
解析
转载请注明原文地址:https://kaotiyun.com/show/QaV4777K
0
考研数学二
相关试题推荐
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
设f(x,y)=则f(x,y)在点(0,0)处()
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
微分方程y’+ytanx=cosx的通解为________.
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形。问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设x>0,可微函数y=f(x)与反函数x=g(y)满足∫0f(x)g(t)dt=.求f(x).
(01年)设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若∫0f(x)g(t)dt=x2ex求f(x).
设f(x)有连续导数,f(0)=0,f’(0)≠0,F(x)=∫0x(x2一t2)f(t)dt且当x→0时,F’(x)与xk是同阶无穷小,则k等于
设f(x)=x2sinx,求f(n)(0)
设f(x)=x2sinx,求f(n)(0).
随机试题
国际法的基本特点。
叩诊确定肝上界时体表标志是
既是抗原呈递细胞,又是免疫应答细胞的是可以杀伤肿瘤细胞无需MHC限制性的是
投资项目社会评价中韵互适性分析主要是考察项目与当地社会环境的相互适应关系,互适性分析内容包括()
人们常说“一寸光阴一寸金,寸金难买寸光阴”,这说明了()。
已知直线l的斜率为1/6,且和两坐标轴围成面积为3的三角形,则l的方程为().
1919年5月爆发的五四运动具备了哪些新的历史特点,使之成为中国革命的新阶段即成为新民主主义革命阶段的开端的()
Withunfamiliarhumanbeings,whenweacknowledgetheirhumanness,wemustavoidstaringatthem,andyetwemustalsoavoidign
Accordingtothelecture,whatis"bartering"?
Thefunnythingabouthowabankworksisthatitfunctionsbecauseofourtrust.Wegiveabankourmoneytokeepitsafeforu
最新回复
(
0
)