首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
admin
2017-06-14
38
问题
设A
m×n
,r(A)=m,B
n×(n-m)
,r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
选项
答案
将B按列分块,设B=[β
1
,β
2
,…,β
n-m
],因已知AB=0,故知B的每-列均是AX=0的解,由r(A)=m,r(B)=n-m,β
1
,β
2
,…,β
n-m
是AX=0的基础解系. 若η是AX=0的解向量,则η可由基础解系β
1
,β
2
,…,β
n-m
线性表示,且表示法唯一,即 η=x
1
β
1
+x
2
β
2
+…+x
n-m
β
n-m
, 即存在唯一的ξ,使Bξ=η.
解析
转载请注明原文地址:https://kaotiyun.com/show/Qpu4777K
0
考研数学一
相关试题推荐
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是()
(1998年试题,八)设正项数列{an}单调减少,且发散,试问级数是否收敛?并说明理由.
判断下列函数的单调性:
随机试题
患者女性,34岁,输卵管绝育术后3年,再婚后要求输卵管复通入院。平素月经规律,5~6/27~29天。妇科检查:外阴及阴道无异常,宫颈光滑,子宫及双附件无压痛。术中见下列哪些情况利于输卵管复通
符合行政诉讼第一审普通程序的有()。
港口规划包括()。
在工业生产中,经常利用各种屏蔽来预防事故的发生,其应用的安全理论是()。
下列各项,《固体废物污染环境防治法》未作禁止规定的是()。
下列不属于义务教育阶段学生所专有权利的是()。
()是学生最基本的权利。
2019年年初以来,受美联储暂停加息、短期资本流入等因素影响,人民币对美元汇率中间价由687.55走低至671.01。不考虑其他因素,这对出境游和商品出口的影响有()。
TheColdPlacesTheArcticisapolarregion.ItsurroundstheNorthPole.LikeAntarctica,theArcticisalandofice
TaskOne-PersonWhoisSpeakingForquestions13-17,matchtheextractswiththepeoplelistedA-H.Foreachextract,choose
最新回复
(
0
)