首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
admin
2013-08-30
45
问题
设a
1
,a
2
,…,a
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a
1
,β+a
2
,…,β+a
t
线性无关.
选项
答案
设β,a
1
,a
2
,…,a
t
线性相关,令λβ+λ
1
a
1
+λ
2
a
2
+…+λ
t
a
t
=0, 因为a
1
,a
2
,…,a
t
为AX=0的一个基础解系,β不是AX=0的解, 因此A(λβ+λ
1
a
1
+λ
2
a
2
+…+λ
t
a
t
)=λ(Aβ),因为Aβ≠0,所以λ=0, 因此β,a
1
,a
2
,…,a
t
线性无关,令kβ+k
1
(β+a
1
)+k
2
(β+a
2
)+…+k
t
(β+a
t
)=0, 即(k+k
1
+…+k
t
)β+k
1
a
1
+…+k
t
a
t
=0, ∵β,a
1
,a
2
,…,a
t
线性无关,[*] ∴β,β+a
1
,β+a
2
,…,β+a
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/lJ54777K
0
考研数学一
相关试题推荐
设函数f(x)在x=0的某邻域内具有二阶连续导数。且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则f’(0)=________.
(94年)微分方程ydx+(x2一4x)dy=0的通解为_________.
(2004年)微分方程(y+χ3)dχ-2χdy=0满足的特解为_______.
设函数.设数列{xn}满足证明存在,并求此极限.
由a1=(1,1,0,0)T,a2=(1,0,1,1)T所生成的向量空间记作L1,由b1=(2,一1,3,3)T,b2=(0,1,一1,一1)T所生成的向量空间记作L2,试证L1=L2.
设A为2阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-2α=0,试证α,Aα线性无关;
容量为10000m3的污水处理池,开始时池中全部是清水,现有污染物的质量浓度为1/3kg/m3的污水流经该处理池,流速为50m3/min,已知每分钟处理2%的污染物,求:经过多长时间,从池中流出的污染物的质量浓度为1/80kg/m3.
设f(x,y)与G(x,y)均为可微函数,且G’y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件G(x,y)=0下的一个极值点,下列选项正确的是().
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
随机试题
等质量的甲、乙、丙三种金属的粉末,与足量的稀盐酸反应(反应后甲、乙、丙化合价相同),生成H2的质量与反应时间的关系如图所示,下列说法错误的是:
企业新购的固定资产均按______计价。()
下列选项中,医务人员应树立的正确功利观不包括
A.殷门定位B.章门定位C.关门定位D.石门定位E.郄门定位
下列关于施工图预算对施工企业的作用,表述正确的是()。
某上市银行的员工在家中无意间向亲属透露了所在银行可能面临重大诉讼的信息,该亲属第二天就卖掉了该银行的股票。由于是无意的,该银行员工的行为不属违规。( )
元认知是对认知的认知。()
下列有关书法艺术的表述,正确的是()。
Shehasbeenthesubjectofmassivemediacoverage.
SteveJobsisanentrepreneur.Andthatishowhistorywilllongrememberhim.Notprimarilyasafiduciaryoraninstitutionbu
最新回复
(
0
)