设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=∫01f(x)dx=0,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=0.

admin2022-10-12  37

问题 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=∫01f(x)dx=0,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=0.

选项

答案令F(x)=∫0xf(t)dt,F’(x)=f(x),F(0)=F(1)=0,由罗尔定理,存在c∈(0,1),使得F’(c)=0,即f(c)=0.令φ(x)=exf(x),φ(0)=φ(c)=0,由罗尔定理,存在ξ∈(0,c)∈(0,1),使得φ’(ξ)=0,而φ’(x)=ex[f’(x)+f(x)]且ex≠0,故f’(ξ)+f(ξ)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/QsC4777K
0

最新回复(0)