首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
admin
2019-09-27
31
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY化为标准形f=y
1
2
+y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
选项
答案
二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为 f=X
T
AX. 其中A=[*].因为Q
T
AQ=B=[*],所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4. 而|λE-A|=λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2),所以有 λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2)=(λ-1)
2
(λ-4), 解得a=2,b=1.当λ
1
=λ
2
=1时,由(E-A)X=0得ξ
1
=[*].λ
3
=4时, 由(4E-A)X=0得ξ
3
=[*].显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/R1S4777K
0
考研数学一
相关试题推荐
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组Ab的通解为().
方程y’’一2y’+3y=exsin的特解的形式为
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
利用代换将方程y”cosx-2y’sinx﹢3ycosx﹦ex化简,并求出原方程的通解。
设f(x)在[a,b]上有二阶连续导数,证明∫baf(x)dx﹦[f(a)﹢f(b)]﹢∫baf”(x)(x-a)(x-b)dx。
在微分方程﹦y-x2的通解中求一个特解y﹦y(x)(x>0),使得曲线y﹦y(x)与直线x﹦1,x﹦2及y﹦0所围平面图形绕x轴旋转一周的旋转体体积最小。
设A,B均为n阶矩阵,A可逆,且A与B相似,则下列命题中正确的个数为()①AB与BA相似;②A2与B2相似;③AT与BT相似;④A-1与B-1相似。
设3阶矩阵A的各行元素之和都为2,向量α1=(一1,1,1)T,α2=(2,一1,1)T都是齐次线性方程组AX=0的解.求A.
设,方程组AX=β有解但不唯一.求正交阵Q,使得QTAQ为对角阵.
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
随机试题
我国慢性肾衰竭最常见的病因为
A.温中健脾B.导滞和胃C.疏肝理气,和胃止痛D.疏肝泄热,和胃止痛E.温中散寒,和胃止痛某患者,症见上腹部胀痛,痛连胁肋,生气时胃痛加重。治疗原则为
钢筋混凝土梁在正常使用荷载下,下列叙述是正确的是()。
某水利工程中饱和无黏性土的相对密度为78%,位于地震设防烈度8度地区,水平地震动峰值加速度为0.30g,则液化临界相对密度(Dr)cr和液化判别情况应为下列()项。
有偿使用建设用地分为()等方式获得。
《关于开展治理商业贿赂专项工作的意见》是于()年下发的。
娟娟一闻到百合花的香味,马上说出花的名称。这种心理现象是()。
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
在函数中,可以用auto、extem、register和static这四个关键字中的一个来说明变量的存储类型,如果不说明存储类型,则默认的存储类型是()。
TheEconomistIntelligenceUnit(EIU)earnestlyattemptstomeasurewhichcountrywillprovidethebestopportunitiesforahealth
最新回复
(
0
)