首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是周期为2的连续函数。 证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx.
设f(x)是周期为2的连续函数。 证明对任意的实数t,有∫tt+2f(x)dx=∫02f(x)dx.
admin
2022-10-08
117
问题
设f(x)是周期为2的连续函数。
证明对任意的实数t,有∫
t
t+2
f(x)dx=∫
0
2
f(x)dx.
选项
答案
证法一: 由积分的性质知,对任意的实数t, ∫
t
t+2
f(x)dx=∫
t
0
f(x)dx+∫
0
2
f(x)dx+∫
t
t+2
f(x)dx 令s=x-2,则有 ∫
0
t
f(x)dx=∫
0
t
f(s+2)ds=∫
0
t
f(s)ds=-∫
t
0
f(x)dx 所以 ∫
t
t+2
f(x)dx=∫
t
0
f(x)dx+∫
0
2
f(x)dx-∫
t
0
f(x)dx=∫
0
2
f(x)dx 证法二: 设F(t)=∫
t
t+2
f(x)dx,由于 F’(t)=f(t+2)-f(t)=0 所以F(t)为常数,从而有F(t)=F(0),而F(0)=∫
0
2
f(x)dx,所以 F(t)=∫
0
2
f(x)dx,即∫
t
t+2
f(x)dx=∫
0
2
f(x)dx
解析
转载请注明原文地址:https://kaotiyun.com/show/R4R4777K
0
考研数学三
相关试题推荐
已知是矩阵的一个特征向量.问A能否相似于对角阵?说明理由.
设y=f(x)是由方程sin(xy)+ln(y-x)=x所确定的隐函数,求
设y=y(x)由方程2xy=x+y确定,则dy|x=0=_________.
设4元齐次方程组(I)为且已知另-4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部
设向量组试问(1)a为何值时,向量组线性无关?(2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
某产品的成本函数为C(q)=aQ2+bQ+c,需求函数为其中p为价格,Q为需求量(产量),常数a,b,c,d,e>0,且d>b,求:利润最大时的产量及最大利润;
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用上题的结论计算定积分
求下列不定积分:
(I)设f(x)是连续函数,并满足又F(x)是f(x)的原函数,且F(0)=0,则F(x)=__________;(Ⅱ)若函数f(x)连续并满足则f(x)=__________.
随机试题
在一棵玫瑰树下生活着一只蜗牛,这只蜗牛什么事也不做,什么事也不会做,但是这只蜗牛却对自己的行为有着种种理由,它非常骄做。新的一年来到了,玫瑰树吐出了新的花苞,接着开出了美丽的花朵,吸引人们都来欣赏。蜗牛不明白玫瑰树为什么总是吐出花荷,开出花朵。玫瑰树告诉蜗
下列除哪项外,均可使用培元朴肾法
患儿,男,3岁半,身高95cm,体重16kg。一天前开始发热,20h左右出现腹泻,约3h一次大便,量少,黄色黏液便,呕吐1次。检查结果:体温38.8℃,脉搏118次/分,呼吸28次/分,出现轻微脱水症状,白细胞计数18.5×109/L(参考值4.0×109
一套完整的财务报表至少应当包括()。
所谓“职务作品”,是指()。
1956年4月,毛泽东发表了《沦十大关系》的重要讲话,下面关于讲话的说法,正确的是()。
SQL语言集数据定义功能、数据操纵功能和数据控制功能于一体。如下所列语句中,是属于数据控制功能的语句______。
Itisprobablethatwhenmenfirstpaintedtheirfacesmany【C1】______ofyearsago,itwas【C2】______thepurposeoffrightening
Truerelaxationismostcertainlynotamatteroffloppingdowninfrontofthetelevisionwithawelcomedrink.Norisitabout
Howdoesthemanrespondwhenthewomandecidestheyshouldgoonadiet?
最新回复
(
0
)