首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,试证明: (Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。 (Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
设A是m×n阶矩阵,试证明: (Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。 (Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
admin
2018-11-16
36
问题
设A是m×n阶矩阵,试证明:
(Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。
(Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
选项
答案
(Ⅰ)因为r(A)=m,对任何β,m=r(A)≤r(A,β)≤m,((A,β)是m×(n+1)矩阵)因此总有r(A)=r(A,β),于是方程组AX=β总有解。设C=(β
1
,β
2
,…,β
s
),对每个i=1,2,…,s,取η
1
是方程组AX=β
1
的一个解,则矩阵D=(η
1
,η
2
,…,η
s
),则AD=C。 (Ⅱ)如果A列满秩,则A
T
行满秩,根据(Ⅰ)的结果,存在m×n矩阵H,使得A
T
H=E,记B=H
T
,则BA=H
T
A=(A
T
H)
T
=E。
解析
转载请注明原文地址:https://kaotiyun.com/show/R8W4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
[*]
设α为n维非零列向量,A=E一证明:A可逆并求A一1;
设λ0为A的特征值.证明:求A2,A2+2A+3E的特征值;
设二维随机变量(X,Y)的联合密度为f(x,y)=求c;
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设方程组AX=β有解但不唯一,(1)求a;(2)求可逆矩阵P,使得P一1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
[*]积分区域为圆域的一部分,被积函数又为f(x2+y2)的形式,应用极坐标系计算.所给二次积分的积分区域为它为圆域x2+y2≤a2在第一象限的1/2,即D={(r,θ)10≤r≤a,0≤θ≤π/4).应改换为极坐标系计算:
设f(x)具有连续的二阶导数,令g(x)=求g’(x)并讨论其连续性.
在天平上重复称量一重为a的物品.假设各次称量结果相互独立且同服从正态分布N(a,0.22).若以表示n次称量结果的算术平均值,则为使n的最小值不小于自然数___________.
随机试题
学习需要与诱因的关系是什么?
A.KClB.NaClC.尿素D.尿素和NaCl建立肾外髓部渗透压梯度的主要物质是
关于白矾煅制说法不正确的是
糖尿病患者不宜选用的物剂型是()
合同法律关系是指由合同法律规范所调整的,在民事流转过程中所产生的( )关系。
企业建立会计电算化系统,首先要做的工作是()。
假设开发法中的开发期包括()。
下列各项关于交易性金融资产的表述中,不正确的是()。
根据以下图形的规律,问号处应填入的是()。
打开考生文件夹下的演示文稿yswg.pptx,按照下列要求完成对此文稿的修饰并保存。使用“元素”主题修饰全文,将全部幻灯片的切换方案设置成“摩天轮”,效果选项为“自左侧”。
最新回复
(
0
)