首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
admin
2016-10-20
85
问题
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
选项
答案
设r(A)=r,r(B)=s,且α
1
,α
2
,…,α
n-r
是齐次方程组Ax=0的基础解系,即矩阵A关于λ=0的特征向量,β
1
,β
2
,…,β
n-s
是B关于λ=0的特征向量.那么,向量组 α
1
,α
2
,…,α
n-r
,β
1
,β
2
,…,β
n-s
必线性相关(由于n-r+n-s=n+(n-r-s)>n. 于是存在不全为零的实数k
1
,k
2
,…,k
n-r
,l
1
,l
2
,…,l
n-s
,使 k
1
α
1
+k
2
α
2
+…+k
n-r
α
n-r
+l
1
β
1
+l
2
β
2
+…+l
n-s
β
n-s
=0. 因为α
1
,α
2
,…,α
n-r
线性无关,β
1
,β
2
,…,β
n-s
线性无关,所以k
1
,k
2
,…,k
n-r
与l
1
,l
2
,…,l
n-s
必分别不全为零.令γ=k
1
α
1
+k
2
α
2
+…+k
n-r
α
n-r
=-(l
1
β
1
+l
2
β
2
+…+l
n-s
β
n-s
), 则γ≠0,从特征向量性质1知,γ既是A关于λ=0的特征向量,也是B关于λ=0的特征向量,因而A,B有公共的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/RYT4777K
0
考研数学三
相关试题推荐
一根长为l的棍子在任意两点折断,试计算得到的三段能围成三角形的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
如果n个事件A1,A2,…,An相互独立,证明:
下列反常积分是否收敛?如果收敛求出它的值:
设A与B均为n,阶矩阵,且A与B合同,则().
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
随机试题
M-Q型显影液组合是
唇、舌、耳、鼻及眼睑断裂伤,离体组织尚完好,应尽量将离体组织缝回原处,但一般不宜超过
患者女性,26岁,于2000年4月20日因“宫外孕、出血性休克”急诊手术。人手术室时,神志清,T37.2℃,P92次/分,BP13.3/8.0kPa,硬膜外麻醉成功后,突然出现意识丧失,面色苍白,口唇四肢末梢严重发绀,脉搏、心音、血压均测不出,血氧饱和
关于基金分类的意义,以下选项中表述不正确的是()。
债权人行使撤销权的必要费用,由()承担。
某蔬菜食品公司因销售假酒,被相关部门处以罚款5000元、停业整顿的行政处罚。相关部门的上述处罚()。
Shakespeare’slifetimewascoincidentwithaperiodofextraordinaryactivityandachievementinthedrama.【F1】Bythedateofh
无符号二进制整数01110101转换成十进制整数是________。
WhenwastheWorldBankofficiallyfounded?
Anewstudyconductedhasdemonstratedthatpublictransportismoreefficientthancars.Thestudycomparedtheproportionofw
最新回复
(
0
)