首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知下列非齐次线性方程组(Ⅰ),(Ⅱ): (1)求解方程组(Ⅰ),用其导出组的基础解系表示通解; (2)当(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
已知下列非齐次线性方程组(Ⅰ),(Ⅱ): (1)求解方程组(Ⅰ),用其导出组的基础解系表示通解; (2)当(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
admin
2017-06-26
36
问题
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):
(1)求解方程组(Ⅰ),用其导出组的基础解系表示通解;
(2)当(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
选项
答案
(1)χ=(-2,-4,-5,0)
T
+k(1,1,2,1)
T
; (2)将(Ⅰ)的通解χ=(χ
1
,χ
2
,χ
3
,χ
4
)=(-2+k,-4+k,-5+2k,k)
T
代入(Ⅱ)的第1个方程,得-2+k+m(-4+k)-(-5+2k)-k=-5,即(3-4m)+(m-2)k=-5,由k的任意性得m=2,将χ代入(Ⅱ)的第2个方程得n=4,将χ代入(Ⅱ)的第3个方程得t=6.故当m=2,n=4,t=6时,(Ⅰ)的解都是(Ⅱ)的解,此时,由(Ⅱ)的增广矩阵的初等行变换: [*] 得(Ⅱ)的通解为χ(-2,-4,-5,0)
T
+c(1,1,2,1)
T
,可见(Ⅱ)与(Ⅰ)的通解相同,故当m=2,n=4,t=6时,(Ⅰ)与(Ⅱ)同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/RjH4777K
0
考研数学三
相关试题推荐
设总体X的概率密度为p(x,λ)=其中A>0为未知参数,a>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量
设n阶矩阵A与B等价,则必有().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a_________.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
设生产函数为Q=ALaKβ,其中Q是产出量,L是劳动投入量K是资本投入量,而A,a,β均为大于零的参数,则当Q=1时K关于L的弹性为_________.
随机试题
A.异地经营B.经营范围C.药品购销D.药品集贸市场E.进口药品国内销售的代理商
计算机数的最小单位是( )。
某一般纳税人购入不含税价格800万元,增值税136万元的商品。商品到达后验收时发现短缺30%,其中定额内合理损耗5%,另25%的短缺原因尚待查明。则该批商品存货的实际入库成本应为()万元。
有些课题主要包含高度有结构的知识和技能(如数学、物理、化学、计算、语法等),如果教学目标是要求学生尽快地掌握这种知识和技能,则宜于采用()。
货币转化为资本的决定性条件是()。
下列属于事业单位聘用合同必备条款内容的是()。
设随机变量X,Y不相关,且E(X)=2,E(Y)=1,D(X)=3,则E[X(X+Y—2)]=()
算法的空间复杂度是指
下面程序的结果【】。#include<iostream.h>intf(int);voidmain(){intx=1,i;for(i=0;i<3;i++)
A、Theyofteninterferewithschoolgames.B、Theyhaveactualmeaningintherealworld.C、Theydon’thaveaformatandgoverning
最新回复
(
0
)