首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维列向量,且A=E-ααT. (Ⅰ)证明:A2=A的充分必要条件是α为单位向量; (Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解; (Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
设α为n维列向量,且A=E-ααT. (Ⅰ)证明:A2=A的充分必要条件是α为单位向量; (Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解; (Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
admin
2021-03-18
47
问题
设α为n维列向量,且A=E-αα
T
.
(Ⅰ)证明:A
2
=A的充分必要条件是α为单位向量;
(Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解;
(Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
选项
答案
(Ⅰ)A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+αα
T
·αα
T
, 令α
T
·α=k,则A
2
=E-(2-k)αα
T
, 故A
2
=A的充分必要条件是k=1,即α为单位向量; (Ⅱ)由α为单位向量得A
2
=A,或A(E-A)=0, 则r(A)+r(E-A)≤n, 再由r(A)+r(E-A)≥r(E)=n得r(A)+r(E-A)=n, 而E-A=αα
T
,从而r(E-A)=r(αα
T
)=r(α)=1,于是r(A)=n-1, 方程组AX=0的基础解系含一个线性无关的解向量, 再由Aa=(E-αα
T
)α=α-α=0得α为AX=0的基础解系, 故AX=0的通解为X=ια(其中ι为任意常数). (Ⅲ)令α=[*] 由B
2
=B得B的特征值为0,1, 再由tr(B)=α
1
2
+α
2
2
+…+α
n
2
=α
T
α=1得 B的特征值为λ
1
=λ
2
=…=λ
n-1
=0,λ
n
=1, 故A的特征值为λ
1
=λ
2
=…=λ
n-1
=1,λ
n
=0. 因为A
T
=A,所以A可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Roy4777K
0
考研数学二
相关试题推荐
已知当x→0时,一1与cosx一1是等价无穷小,则常数a=_______.
设y=cosx2sin2,则y’=______.
设x为3维单位列向量,E为3阶单位矩阵,则矩阵E一xxT的秩为__________.
的通解为_______.
设f(χ,y)为连续函数,且f(χ,y)=y2+χf(χ,y)dχdy,则f(χ,y)=_______.
微分方程xy’+y=0满足初始条件y(1)=2的特解为_________。
设(I)证明f(x)在x=0处连续;(Ⅱ)求区间(-1,﹢∞)内的f’(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3.①证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关.②设α1,α2,α3的特征值依次为1,-1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
在椭圆内嵌入有最大面积的四边平行于椭圆轴的矩形,求该最大面积.
随机试题
称量法测定黄铁矿中硫的质量分数,称取样品0.3853g,下列结果合理的是()。
频带传输系统与基带传输系统的区别在于在发送端增加了调制,在接收端增加了解调,以实现信号频带的搬移。()
甲、乙结婚的第10年,甲父去世留下遗嘱,将其拥有的一套房子留给甲,并声明该房屋只归甲一人所有。下列哪一项表述是正确的()
CT平扫无法显示的是
A.温和灸B.温针灸C.无瘢痕灸D.雀啄灸E.温灸器灸将艾条燃着的一端与施灸部位并不固定在一定的距离,而是一上一下的移动施灸称为
[1995年第157题]关于居住区用地界限的划分.下列哪项不正确?
提前支取的定期储蓄存款,支取部分()。
甲、乙两部参加军事演习。甲部从大本营以60千米/小时的速度往西行进,乙部晚半小时由大本营往东行进,速度比甲部慢。两部同时接到军令紧急集合,集合地位于大本营正北某处。此时两部所在位置与集合地恰好构成有一角为30度的直角三角形。若两部同时调整方向往集合地行军,
2012年1~6月.江西省十大战略性新兴产业固定资产投资(以下简称“十大产业投资”)总量突破千亿元,达1112.52亿元,比上年同期增长24.0%,占全省固定资产投资(计划投资500万元及以上项目固定资产投资,下同)的23.5%;对全省固定资产投资增长的贡
thehighestmountainsasbungeejumpingbecuredtoseekdangerA.diseasescouldnoteasily【T13】______,andlifewasaconti
最新回复
(
0
)