首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2Aα3=8α1+6α2—5α3. 求A的特征值和特征向量;
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2Aα3=8α1+6α2—5α3. 求A的特征值和特征向量;
admin
2014-02-06
83
问题
已知A是3阶矩阵,α
1
,α
2
,α
3
是3维线性无关列向量,且Aα
1
=3α
1
+3α
2
—2α
3
,Aα
2
=一α
2
Aα
3
=8α
1
+6α
2
—5α
3
.
求A的特征值和特征向量;
选项
答案
由[*]可知矩阵B的特征值为一1,一1,一1,故矩阵A的特征值为一1,一1,一1.对于矩阵B,由[*]得特征向量(0,1,0)
T
,(一2,0,1)
T
,那么由Bα=λα即(P
-1
AP)α=λα,得A(Pα)=λ(Pα).所以[*]是A的特征向量,于是A属jf特征值一1的所有特征向量是k
1
α
2
+k
2
(一2α
1
+α
3
),其中k
1
,k
2
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Rt54777K
0
考研数学一
相关试题推荐
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解,试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1(其中k1+…+kn-r+1=1).
设A是4×3矩阵,且A的秩r(A)=2,而,则r(AB)=___________________
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33.求矩阵B.使得A(α1,α2,α3)=(α1,α2,α3)B;
求下列不定积分:
设区域D是由y=x,x2+y2=2x,x轴所围成的第一象限的部分,求:(Ⅰ)区域D绕x轴旋转所得旋转体的体积;(Ⅱ)区域D绕x=2旋转所得旋转体的体积.
设函数y=y(x)满足xdy/dx-(2x2-1)y=x3,x≥1,y(1)=y0.已知存在,求y0的值,并求极限.
适当选取函数ψ(x),作变量代换y=ψ(x)u,将y关于x的微分方程化为u关于x的二阶常系数齐次线性微分方程,求ψ(x)及常数λ,并求原方程满足y(0)=1,y’(0)=0的特解.
X与Y的联合概率分布
(2000年试题,十一)某试验性生成线每年一月份进行熟练工与非熟练工的人数统计,然后将六分之一的熟练工支援其他生产部门.其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有五分之二成为熟练丁,没第n年一月份统计的熟练工和非熟练工所占百分比
随机试题
什么是荧光探伤?
在CFC中,()对大气层中的臭氧层起破坏作用。
请问“实行保税”和“全额征收关税”含义和实行办法是什么?
甲公司为一家制造企业。2×17年4月1日,为降低采购成本,自乙公司一次购进了三套不同型号且有不同生产能力的设备X、Y和Z。甲公司以银行存款支付货款880000元、包装费20000元。X设备在安装过程中领用生产用原材料账面成本20000元(未计提存货跌价准备
【2015年广西.单选】有利于教育逐级普及的学制是()。
行政法规范在对行政关系加以调整后所形成的一种行政法上的权利义务关系即行政法律关系,下列不属于行政法律关系特征的一项是()。
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀的肥皂水,问何时余下的肥皂水中只有1kg肥皂.
Writeanessayof160-200wordsbasedonthefollowingdrawing.Inyouressay,youshould1)describethedrawingbriefly,
Youwillhearfivedifferentbusinesspeopletalkingaboutpartnerships,oneformofbusiness.Foreachextracttherearetwota
Enoughsleepisimportanttohealth.Theamountofsleep【C1】_______dependsontheageofthepersonandtheconditionsinwhich
最新回复
(
0
)