首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,.证明: 方程f(x)f’’(x)+[f’(x)]2=0在(0,1)内至少有两个不同的实根.
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,.证明: 方程f(x)f’’(x)+[f’(x)]2=0在(0,1)内至少有两个不同的实根.
admin
2019-04-08
82
问题
[2017年] 设函数在[0,1]上具有二阶导数,且f(1)>0,
.证明:
方程f(x)f’’(x)+[f’(x)]
2
=0在(0,1)内至少有两个不同的实根.
选项
答案
由罗尔定理知,存在ξ
2
∈(0,ξ
1
),使得f’(ξ
2
)=0. 构造辅助函数F(x)=f(x)f’(x),则F(0)=F(ξ
2
)=F(ξ
1
)=0. 再根据罗尔定理可得,存在η
1
∈(0,ξ
2
),η
2
∈(ξ
2
,ξ
1
),使得 F’(η
1
)=F’(η
2
)=0.结论得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/SD04777K
0
考研数学一
相关试题推荐
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0。试证这三条直线交于一点的充分必要条件为a+b+c=0。
已知矩阵(Ⅰ)求A99;(Ⅱ)设三阶矩阵B=(α1,α2,α3)满足B2=BA。记B100=(β1,β2,β3),将β1,β2,β3分别表示为α1,α2,α3的线性组合。
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
设总体X的概率密度为其中参数θ(0<0<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设随机变量X~N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为0.5,则μ=________。
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
设空间曲线C由立体0≤x≤1,0≤y≤1,0≤z≤1的表面与平面x+y+z=所截而成,计算|(z2-y2)dx+(x2-z2)dy+(y2-x2)dz|.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
设线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
随机试题
[背景资料]2014年×月×日某市某桥梁工程在拆除引桥支架施工过程中,发生一起高处坠落事故,造成一人死亡。事故发生经过如下:某市大桥在主体工程基本完成以后,开始进行南引桥下部板梁支架的拆除工作。当日下午3时,该项目部领导安排部分作业人员去进行拆除
普萘洛尔的特点有
某公司从银行获得贷款200万元,年利率10%,期限5年,还款方式为等额本金法,则第二年应还款( )万元。
服务器必须具有出色的可靠性,必须具备可用性和可扩充性。()
下列关于企业投资种类的说法中,正确的有()。
按照鲁宾的观点,爱情和喜欢的区别主要包括()。
德育的价值属性和对平行教育子系统的作用是德育的_________功能的两大含义。()
U.S.employersareanticipatingariseinworkplacediscriminationclaimsbasedontheirownhiringpolicies.Employmentlawfir
有如下程序:#include#includeusingnsmespacestd;classPerson{public:Person(stringn):name(n){cout
Lookatthetenstatementsforthispart.Youwillhearapassageabout"CreditCardsHistory".Youwilllistentoittwice
最新回复
(
0
)