首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
admin
2016-03-05
54
问题
设矩阵
的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
选项
答案
矩阵A的特征多项式为[*]如果λ=2是单根,则λ
2
—8λ+1 8+3a是完全平方,那么有18+3a=16,即[*]则矩阵A的特征值是2,4,4,而[*],故λ=4只有一个线性无关的特征向量,从而A不能相似对角化.如果λ=2是二重特征值,则将λ=0代入λ
2
一8λ+18+3a=0,则有18+3a=12,即a=一2?于是λ
2
一8λ+18+3a=(λ一2)(λ一6),则矩阵A的特征值是2,2,6,而r(2E—A)=[*]故λ=2有两个线性无关的特征向量,从而A可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/T434777K
0
考研数学二
相关试题推荐
设不能相似于对角矩阵,则()
已知二次型f(x1,x2,x3)=xTAx的负惯性指数q=2,r(A)=3,且A2-2A-3E=0,A为实对称矩阵,则二次型在正交变换x=Qy下的标准形为()
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Oy轴旋转一周所产生的两个旋转体的体积之比.
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵P-1AP属于特征值λ的特征向量是().
设矩阵是满秩的,则直线与直线().
设随机变量X与Y的相关系数为1/3,且E(X)=0,E(Y)=1,E(X2)=4,E(Y2)=10,则E[(X+Y)2]________.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
当x→0时,下列四个无穷小量中,哪一个是比其他三个更高阶的无穷小量?().
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
随机试题
腰部隐隐作痛,酸软无力,缠绵不愈,心烦少寐,口燥咽干,面色潮红,手足心热,舌红少苔,脉弦细数。治疗宜选()(2009年第170题)
初次申领的机动车驾驶证的有效期为多少年?
以下哪项不属实脉类()
根据我国公司法的规定,有限责任公司章程的制定者是公司设立时的()。
有线电视系统的前端设备不包括( )。
当投资企业对被投资单位存在()关系时,在其财务报表中应采用权益法核算该项长期股权投资。
根据《企业破产法》的规定,企业破产案件应当由()人民法院管辖。
设行列式则行列式
2012年某市开展了市民阅读情况调查。调查采取随机抽样方式,访问了本市12周岁以上的1000名市民。调查显示,多数受访者保持每天阅读的良好习惯。其中,阅读时间在1~2小时的为44.8%,2~3小时的为11.6%,3小时以上的为7.5%。
Whydoesthemangotoseehisprofessor?
最新回复
(
0
)