首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组有3个线性无关的解. (1)证明方程组系数矩阵A的秩r(A)=2; (2)求a,b的值及方程组的通解.
已知非齐次线性方程组有3个线性无关的解. (1)证明方程组系数矩阵A的秩r(A)=2; (2)求a,b的值及方程组的通解.
admin
2017-06-26
66
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明方程组系数矩阵A的秩r(A)=2;
(2)求a,b的值及方程组的通解.
选项
答案
(1)若ξ
1
,ξ
2
,ξ
3
是Aχ=b的3个线性无关解,则ξ
1
-ξ
2
,ξ
1
-ξ
3
是Aχ=0的两个线性无关解,故Aχ=0的基础解系所含向量个数4-r(A)≥2,则r(A)≤2,又显然有r(A)≥2,推出r(A)=2; (2)a=2,b=-3,通解χ=(2,-3,0,0)
T
+k
1
(-2,1,1,0)
T
+k
2
(4,-5,0,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/TjH4777K
0
考研数学三
相关试题推荐
设总体X的概率密度为p(x,λ)=其中A>0为未知参数,a>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量
微分方程的通解是_________.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
证明方程在区间(0,+∞)内有且仅有两个不同实根.
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
设向量组(Ⅰ)a1,a2,…,as,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i:1,2,…,s)均可以由a1,…,as线性表示,则().
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有().
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是().
随机试题
以下因素中,不会引起病理性颅内压增高的是
中央处理器有两种工作状态,当它处于目态时不允许执行的指令是()
细菌性痢疾的临床表现不包括
甲公司在面积为10000m2。的土地上开发建设一写字楼,建筑覆盖率为45%,总楼层为6层,一层和二层面积相等,三层以上为标准层,总建筑面积为20000m2。建成后,某房地产估价机构接受甲公司委托对该写字楼进行估价,经查验会计凭证以及会计师事务所的审计报告,
下面关于水泥混凝土路面施工说法错误的是()
“一带一路”是我国基于古代丝绸之路的历史符号所构建的推动国际经贸交流与合作的顶层国家发展倡议。下列历史人物中未曾对古代丝绸之路的开拓与发展做出突出贡献的是:
东汉末年发动黄巾起义的民间教派是
项目验收阶段监理工作的主要内容不包括________。
数据管理技术发展的三个阶段中,()没有专门的软件对数据进行管理。I.人工管理阶段II.文件系统阶段III.数据库阶段
Whattimeisit?
最新回复
(
0
)