首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
admin
2022-10-12
48
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,F’(x)=f(x),∫
0
2
f(t)dt=F(2)-F(0)=F’(c)(2-0)=2f(c),其中0<c<2.因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M,m≤[f(2)+f(3)]/2≤M,由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[f(2)+f(3)]/2,即f(2)+f(3)=2f(x
0
),于是f(0)=f(c)=f(x
0
),由罗尔定理,存在ξ
1
∈(0,c)∈(0,3),ξ
2
∈(c,x
0
)∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)0.令φ(x)=e
-2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)∈(0,3),使得φ’(ξ)=0,而φ’(x)=e
-2x
[f"(x)-2f’(x)]且e
-2x
≠0,故f"(ξ)-2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ToC4777K
0
考研数学三
相关试题推荐
[*]
设随机变量X,Y独立同分布且X的分布函数F(x),则Z=max{X,Y}的分布函数为().
函数f(x)=x3一3x+k只有一个零点,则k的取值范围为
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设向量组(Ⅰ):α1,α2,…,αm,组(Ⅱ):β1,β2,…,βn,其秩分别为γ1,γ2,向量组(Ⅲ):α1,α2,…,αm,β1,β2,…,βn的秩为γ3,证明max{γ1,γ2}≤γ3≤γ1+γ2.
设随机变量X的密度函数为则Y=一2x+3服从的分布是________.
设曲线y=bx一x2与x轴所围平面图形被曲线y=ax2(a>0)分成面积相等的两部分,求a的值.
设(1,一1)是曲线y=x3+ax2+bx+c的拐点,且y在x=0处取极大值.求a,b,c.
总体X一N(μ,22),X1,X2,…,Xn为简单随机样本,要使μ的置信度为0.95的置信区间长度不超过1,则至少取样本容量n为().
随机试题
追惟一二,仿佛如昨
某男,5岁。突发高热、呕吐、惊厥,数小时后出现面色苍白、四肢厥冷、脉搏细数、血压下降至休克水平。经实验室检查诊断为暴发型流脑所致感染中毒性休克,应采取的抗休克药物为
下列关于劳动争议处理的说法,错误的是( )。
某企业当年有生产职工为200人,当地政府确定人均月计税工作标准是800元,该企业当年发放的工资总额是210万元,该企业在计算应纳税所得额时,准予扣除的职工工会经费、职工福利费、职工教育费共()。
甲、乙、丙三方合作研发一项新技术,合作开发合同中未约定该技术成果的权利归属。新技术研发成功后,乙、丙提出申请专利,甲不同意。根据《合同法》的规定,下列关于专利申请的表述中,正确的是()。
下列关于契税的陈述,正确的有()。
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD。求证:AB⊥DE;
资本主义土地私有制的特点不包括()。
在完全竞争的条件下,市场均衡意味着资源的最佳配置,而打破市场均衡的可能原因有()。
A、Returnthebikesbacktothesamepick-uppoint.B、Usethebikeforashortorlongtrip.C、Swipetheirordinarytravelcards
最新回复
(
0
)