首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P(Y=2)=___________.
[2005年] 从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P(Y=2)=___________.
admin
2019-05-08
27
问题
[2005年] 从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P(Y=2)=___________.
选项
答案
[*]
解析
解一 由题设知,X的概率分布为
而P(Y=2|X=1)=0,
P(Y=2|X=2)=1/2,P(Y=2|X=3)=1/3,P(Y=2|X=4)=1/4.
故由全概率公式得到
P(Y=2)=
(X=i)P(Y=2|X=i)=(1/4)(0+1/2+1/3+1/4)=13/48.
解二 将(X,Y)视为二维随机变量,先求其联合分布律,再求边缘分布P(Y=2).
P(X=1,Y=1)=P(X=1)P(Y=1|X=1)=(1/4)×1=1/4,
P(X=1,Y=2)=P(X=1)P(Y=2|X=0)=(1/4)×0=0,
同法可得 P(X=1,Y=3)=P(X=1,Y=4)=0.
P(X=2,Y=1)=P(X=2)P(Y=1|X=2)=(1/4)×(1/2)=1/8,
类似地,有P(X=2,Y=2)=1/8,P(X=2,Y=3)=P(X=2)P(Y=3|X=2)=0,
P(X=2,Y=4)=P(X=2)P(Y=4|X=2)=(1/4)×0=0.
P(X=3,Y=1)=P(X=3)P(Y=1|X=3)=(1/4)×(1/3)=1/12,
同法,可得 P(X=3,Y=2)=P(X=3,Y=3)=1/12, P(X=3,Y=4)=0.
P(X=4,Y=1)=P(X=4)P(Y=1|X=4)=(1/4)×(1/4)=1/16,
同法,可得 P(X=4,Y=2)=P(X=4,Y=3)=P(X=4,Y=3)=1/16.
容易写出(X,Y)的联合概率分布为
故
转载请注明原文地址:https://kaotiyun.com/show/ToJ4777K
0
考研数学三
相关试题推荐
f(x)在[一1,1]上连续,则x=0是函数g(x)=的().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
计算∫01dy∫y1x2ex2dx.
设离散型随机变量X服从参数p(0<p<1)的0一1分布。(Ⅰ)求X的分布函数F(x);(Ⅱ)令Y=F(x),求Y的分布律及分布函数G(y)。
设随机事件A,B,C两两独立,且P(A),P(B),P(C)∈(0,1),则必有()
设随机变量X与Y独立,X在区间[0,2]上服从均匀分布,Y服从参数为2的指数分布,求:(Ⅰ)二维随机变量(X,Y)的联合概率密度;(Ⅱ)概率P{X≤Y}。
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
(2001年)设随机变量X,Y的数学期望分别是-2和2,方差分别为1和4,而相关系数为-0.5。则根据切比雪夫不等式P{|X+Y|≥6}≤______。
设(Ⅰ)讨论f(x)的连续性,若有间断点并指出间断点的类型;(Ⅱ)判断f(x)在(-∞,1]是否有界,并说明理由。
随机试题
右心室双出口与完全型大动脉转位的超声鉴别要点是
患者,男性,62岁。1周前脑出血,现病情稳定准备进行康复功能训练,训练前对患者进行患肢肌力程度检测为1级,该肌力程度的表现是
房地产是国民经济发展的一个辅助的生产要素,其他行业的发展与其关系不大。()
鉴于保险市场存在竞争,监理工程师和业主应充分利用这一有利形势,通过适当的程序进行认真挑选,下面关于投保选择,说法正确的是()。
旅游投诉管理机关处理投诉案件后,投诉者或被子投诉者对处理决定不服的,需先申请复议,对复议不服的可向人民法院起诉。
以下变化使事物性质发生改变的是:()
如下函数中,哪个不能作为随机变量X的分布函数?
HowdoyouexplaineconomicsinplainEnglish?TheFederalReserveBankofNewYorkhasbeenansweringthequestionwithaneven
Socialsciencehasweighedinonthe"tigermom"debate,anditlookslikeeveryoneisright:Bothover-protectiveandlaid-back
Computersandelectroniccommunicationsareallowingmanypeopletousetheirhomesasoffices.Andofficeswillneverdisappear
最新回复
(
0
)