首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…+xn,n=2,3,…. (1)证明:方程fn(x)=1在[0,+∞)有唯一实根xn; (2)求.
设fn(x)=x+x2+…+xn,n=2,3,…. (1)证明:方程fn(x)=1在[0,+∞)有唯一实根xn; (2)求.
admin
2016-09-13
49
问题
设f
n
(x)=x+x
2
+…+x
n
,n=2,3,….
(1)证明:方程f
n
(x)=1在[0,+∞)有唯一实根x
n
;
(2)求
.
选项
答案
(1)f
n
(x)连续,且f
n
(0)=0,f
n
(1)=n>1,由介值定理,[*]x
n
∈(0,1),使f
n
(x
n
)=1,n=2,3,…,又x>0时,fˊ
n
(x)=1+2x+…+nx
n-1
>0,故f
n
(x)严格单增,因此x
n
是f
n
(x)=1在[0,+∞)内的唯一实根. (2)由(1)可得,x
n
∈(0,1),n=2,3,…,所以{x
n
}有界. 又因为f
n
(x
n
)=1=f
n+1
(x
n+1
),n=2,3,…,所以 x
n
+x
n
2
+…+x
n
n
=x
n+1
+x
n+1
2
+…+x
n+1
n
+x
n+1
n+1
, 即(x
n
+x
n
2
+…+x
n
n
)-(x
n+1
+x
n+1
2
+…+x
n+1
n
)=x
n+1
n+1
>0,因此x
n
>x
n+1
,n=2,3,…,即{x
n
}严格单调减少.于是由单调有界准则知[*]存在,记[*]=A,由x
n
+x
n
2
+…+x
n
n
=1得[*]=1.因为0<x
n
<x
2
<1,所以[*]=0,于是[*]=1,解得A=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/UJT4777K
0
考研数学三
相关试题推荐
中外历史上,大疫大灾往往导致社会失序,社会失序又使抗疫抗灾雪上加霜。这体现的是事物问()。
第二次鸦片战争后,清朝统治集团内部一部分人震惊于列强的“船坚炮利”,主张学习西方以求“自强”,洋务运动由此兴起。洋务运动的一个重要内容就是创办新式学堂,主要有()。(2012.27多选)
我国的农业社会主义改造经历的形式有()。
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
求下列参数方程所确定的函数的二阶导数d2y/dx2.设f〞(t)存在且不为零.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
差分方程yt+1-yt=t2t的通解为_________.
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
随机试题
深Ⅱ度烧伤局部损伤的深度是
男孩,3岁,常有排尿中断现象,并伴有疼痛,患儿常用手搓拉阴茎,改变体位后,能够恢复排尿。结石的主要成分最可能的是
某施工单位,在工程建设过程中野蛮施工、违章作业、致使军事通信光缆被挖断,造成重大损失,对此行为应当如何处理?( )
你和领导一起到某地开展调查,你因堵车迟到了,领导和其他部门同志非常生气,你怎么办?
取缔非法校车的初衷是为了保障学生的生命安全,但我们也应当注意到.如果没有得力的配套措施,单纯采用这种取缔手段并不一定能够降低事故率:非法校车取缔之后,风险变得分散了,媒体也不会集中报道了,但并不意味着上下学的安全隐患消失,在没有正规校车的情况下,离家较远的
设aibi≠0(i=1,2,…,n),则矩阵的秩为_______.
下列哪一(些)项属于询问一应答式协议 Ⅰ.私钥密码技术 Ⅱ.公钥密码技术
假定有以下循环结构DoUrntil条件循环体Loop则正确的描述是()。
对于循环队列,下列叙述中正确的是()。
CellPhoneLetsYourSecretsOutYourcellphoneholdssecretsaboutyou.Besidesthenamesandnumbersthatyou’veprogram
最新回复
(
0
)