首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0). 求l的方程;
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0). 求l的方程;
admin
2019-03-30
67
问题
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).
求l的方程;
选项
答案
解一 设曲线l的方程为y=f(x),则由题设得到y’-y/x=ax①.下面用凑导数法求解此方程.因y’+(-lnx)’y=ax,在其两边乘以e
-lnx
,得到 e
-lnx
y’+e
-lnx
(-lnx)’y=e
-lnx
·ax=a, 即 (e
-lnx
y)’=a, 两边积分得到 e
-lnx
y=ax+C, 即 y=ax
2
+Cx. 由y(1)=0得到a+C=0,即C=-a,故y=ax
2
-ax. 解二 由题设,有y’-y/x=ax.由此得到 [*] 故 y/x=ax+C, 即 y=ax
2
+Cx. 又由y(1)=0得到a+C=0,即C=-a,所以y=ax
2
-ax. 解三 由一阶线性微分方程的通解公式求之,其中P(x)=-1/x,Q(x)=ax,代入得到 [*] 又由y(1)=0得到C=-a,故曲线l的方程为y=ax
2
-ax.
解析
转载请注明原文地址:https://kaotiyun.com/show/UaP4777K
0
考研数学三
相关试题推荐
将函数f(x)=展开成x一1的幂级数,并指出其收敛区间。
设有正项级数是它的部分和。(Ⅰ)证明收敛;(Ⅱ)判断级数是条件收敛还是绝对收敛,并给予证明。
微分方程y’=1+x+y2+xy2的通解为________。
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与
微分方程xy’+y=0满足初始条件y(1)=2的特解为________。
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=______.
设函数f(x)在[0,1]上连续,且f(x)>0,则=______.
讨论函数f(x)=的连续性.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
随机试题
阅读下面的文言文,按要求答题。 学记虽有嘉肴,弗食,不知其旨也;虽有至道,弗学,不知其善也。是故学然后知不足,教然后知困。知不足,然后能自反也①;知困,然后能自强也,故曰:教学相长也。大学之法②,禁于
流行病学研究对象
急性持续性腹痛阵发性加剧伴休克,最可能的疾病是()。
公路工程地质钻探时,在破碎岩层中,岩芯采取率为()。
施工方应视(),编制深度不同的施工的进度计划,以及按不同计划周期的施工计划。
下列银行业犯罪中,其主观方面不是故意的是()。
甲公司与长期股权投资、合并财务报表有关的资料如下:(1)2013年度①1月1日,甲公司与非关联方丁公司进行债务重组,丁公司以其持有的公允价值为15000万元的乙公司70%有表决权的股份,抵偿前欠甲公司货款16000万元。甲公司对上述应收账款已计提坏账准
团体咨询的工作阶段成员的反应不包括()。
Excitement,fatigue,andanxietycanallbedetectedfromsomeone’sblinks,accordingtopsychologistJohnStern【1】WashingtonUn
TheUnitedStatestakesabiggershareoftheinternationalstudentmarketthananyothercountry.However,with22%ofthetota
最新回复
(
0
)