首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0). 求l的方程;
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0). 求l的方程;
admin
2019-03-30
50
问题
[2006年] 在xOy坐标平面上,连续曲线l过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).
求l的方程;
选项
答案
解一 设曲线l的方程为y=f(x),则由题设得到y’-y/x=ax①.下面用凑导数法求解此方程.因y’+(-lnx)’y=ax,在其两边乘以e
-lnx
,得到 e
-lnx
y’+e
-lnx
(-lnx)’y=e
-lnx
·ax=a, 即 (e
-lnx
y)’=a, 两边积分得到 e
-lnx
y=ax+C, 即 y=ax
2
+Cx. 由y(1)=0得到a+C=0,即C=-a,故y=ax
2
-ax. 解二 由题设,有y’-y/x=ax.由此得到 [*] 故 y/x=ax+C, 即 y=ax
2
+Cx. 又由y(1)=0得到a+C=0,即C=-a,所以y=ax
2
-ax. 解三 由一阶线性微分方程的通解公式求之,其中P(x)=-1/x,Q(x)=ax,代入得到 [*] 又由y(1)=0得到C=-a,故曲线l的方程为y=ax
2
-ax.
解析
转载请注明原文地址:https://kaotiyun.com/show/UaP4777K
0
考研数学三
相关试题推荐
微分方程y’=1+x+y2+xy2的通解为________。
设[0,4]区间上y=f(x)的导函数的图形如图1—2—1所示,则f(x)()
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求(Ⅰ)a,b的值;(Ⅱ)求Bx=0的通解。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
设f(x,y)=,讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
随机试题
华支睾吸虫卫氏并殖吸虫
治疗新生儿脐炎正确的是
A.晒至六、七成干,除去附着物及杂质,再晒干或低温干燥B.阴干或40~50℃烘干C.阴干D.晒干E.反复“发汗”至表面现皱纹,内部水分大部分散失后,阴干灵芝的干燥方法为()
房地产经纪人员职业道德的基本要求包括()等。
下列记账凭证中,必须附原始凭证的有()。
长江股份有限公司(以下简称长江公司)为上市公司,2015年与企业合并、长期股权投资的有关资料如下:(1)2015年1月1日,长江公司向A公司定向发行500万股普通股(每股面值为1元,每股市价为4元)作为对价,取得A公司拥有的甲公司20%的股权,能够对甲公
处理冲突过程中,必须对重大事件进行迅速处理时,可采用()的方法。
能够导致专利权终止的事由包括()。
中国共产党领导的革命政权在不同时期、不同地区分别制定的婚姻法规包括()。
数据库系统的三级模式不包括()。
最新回复
(
0
)