首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr, … βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
设向量组α1,…,αr线性无关,又 β1=a11α1+a21α2+…+ar1αr β2=a12α1+a22α2+…+ar2αr, … βr=a1rα1+a2rα2+…+arrαr 记矩阵A=(aij)r×r,证明:β1,β2
admin
2016-04-11
73
问题
设向量组α
1
,…,α
r
线性无关,又
β
1
=a
11
α
1
+a
21
α
2
+…+a
r1
α
r
β
2
=a
12
α
1
+a
22
α
2
+…+a
r2
α
r
,
…
β
r
=a
1r
α
1
+a
2r
α
2
+…+a
rr
α
r
记矩阵A=(a
ij
)
r×r
,证明:β
1
,β
2
,…,β
s
线性无关的充分必要条件是A的行列式|A|≠0.
选项
答案
不妨设α
j
及β
j
均为n维列向量(j=1,2,…,r),则题设线性表示式可写成矩阵形式 [β
1
β
2
…β
r
]=[α
1
,α
2
,…,α
r
]A 或 B=PA,…(*) 其中B=[β
1
β
2
…β
s
]及P=[α
1
,α
2
,…,α
r
]均为n×r矩阵,且矩阵P的列向量组线性无关.于是可证两个齐次线性方程组Bx=0与Ax=0同解;若x满足Ax=0,两端左乘P并利用PA=B,得Bx=0;若x满足Bx=0,即PAx=0,或P(Ax)=0,因P的列向量组线性无关,得Ax=0,所以,Ax=0与Bx=0同解,→它们的基础解系所含向量个数相等,即r一r(A)=r—r(B),→r(A)=r(B).所以,向量组β
1
…β
r
线性无关→r[β
1
β
2
…β
r
]=r[*]|A|≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/V8w4777K
0
考研数学一
相关试题推荐
设f(x)在(-∞,+∞)内可导,且f(0)≤0,证明:存在ξ∈(ξ1,ξ2),使得f(ξ)+f’(ξ)=2020
下列矩阵不能与对角矩阵相似的是()
设函数f(x)在(-∞,+∞)内连续,其二阶导函数f"(x)的图形如右图所示,则曲线y=f(x)的拐点个数为().
若两向量组的秩相等,那么必有().
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线删与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x),直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的长度
设f(x)=(0≤x≤π/2),则f(x)在(0,π/2)内不可导点的个数为
设4阶实对称矩阵A满足A4=E,且A≠±E,则A的不同特征值的个数为()
以y1=eχcos2χ,y2=eχsin2χ与y3=e-χ为线性无关特解的三阶常系数齐次线性微分方程是
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0.(I)求f(x)在区间[0,3π/2]上的平均值;(Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
设A>0,D是由曲线段y=Asinx(0≤x≤π/2)及直线y=0,x=π/2所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积.若V1=V2,求A的值.
随机试题
说明某事物在时间上的发展变化,可用
患者,女性,50岁。有十二指肠溃疡病史20年,因患类风湿关节炎需要服用非甾体抗炎药,则最佳选用
A.“作为医生,不可能一方面赚钱,一方而从事伟大的艺术——医学”B.“医生要有一切必要的知识,要洁身自持,要使患者信赖……”C.“启我爱医术,复爱世间人”D.“愿绝名利心,一切为病人,无分爱与憎,不问富与贫,凡诸疾病者,一视如同仁”E.“无
A.全血细胞减少B.嗜碱粒细胞增多C.骨髓中原始细胞明显增多D.酸化溶血试验阳性E.网织红细胞增多慢性粒细胞白血病的特点是()
患者,男,80岁,肺源性心脏病,呼吸困难、咳嗽、咳痰,遵医嘱给予鼻导管氧气吸入,因需要进食,此时应采取的最佳措施是()
根据国家有关特种设备安全管理的规定,特种设备使用单位应对其使用的特种设备安全负责。下列关于特种设备使用管理的说法中,正确的是()。
固定资产建造采用自营方式的,在建设期间发生的工程物资盘亏、报废及毁损的净损失应当计入营业外支出。()
分批法的主要特点有()。
△ABC的内角A,B,C的对边分别为a,b,c.若a,b,c成等比数列,且c=2a,则cosB等于[].
A、Theonesthattriggermemoriesoropinions.B、Theonesthatmakeothersfeelsurprised.C、Theonesthatyoucantalkalotabo
最新回复
(
0
)