首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根; (2)记(1)中的实根为xn,证明存在,并求此极限.
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根; (2)记(1)中的实根为xn,证明存在,并求此极限.
admin
2014-01-26
79
问题
(1)证明方程x
n
+x
n-1
+…+x=1(n为大于1的整数)在区间
内有且仅有一个实根;
(2)记(1)中的实根为x
n
,证明
存在,并求此极限.
选项
答案
(1)令 f
n
(x)=x
n
+x
n-1
+…+x-1.因为f
n
(x)在[*]上连续,又[*],f
n
(1)=n-1>0, 由介值定理,存在x
n
∈[*],使f
n
(x
n
)=0(n=2,3,…),即原方程在区间[*]内至少有一个实根.又当x∈[*]时,f’(x)=1+2x+…+nx
n-1
>0,即f
n
(x)在[*]内单调增加,故原方程在区间[*]内有且仅有一个实根. (2)由(1)知数列{x
n
}有界,下面证明单调性. 因为 f
n
(x
n
)=0=f
n+1
(x
n+1
),n=2,3,…. 故 x
n
n
+x
n
n-1
+…+x
n
-1=(x
n+1
n-1
+…+x
n+1
n
n+1
n+1
>0, 即f
n
(x
n
)>f
n2
(x
n+1
),而f
n
(x)在[*]内单调增加,从而有x
n
>x
n+1
,即数列{x
n2
}单调减少(n=2,3,…),所以[*]存在,设为l.由于0<x
n
<x
2
<1,故0<
n
n
<x
2
n
.根据夹逼定理有[*]. 由f
n
(x
n
)=0(n=2,3,…),即x
n
n
+x
n
n-1
+…+x
n
=1,得[*], 令n→∞,取极限得[*],解得[*].故[*].
解析
[分析]根的存在性用介值定理,而唯一性利用单调性;对于(2),应先证明极限存在,在已知关系式两边取极限即可.
[评注]注意解答过程中的步骤0<x
n
<x
2
<1不是多余的,因为仅由0<x
n
<1是推不出
的.
转载请注明原文地址:https://kaotiyun.com/show/Vm34777K
0
考研数学二
相关试题推荐
设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(EX)为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y).
设其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的是().
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有()
(89年)求微分方程y〞+5y′+6y=2e-χ的通解.
[2016年]设函数f(x)连续,且满足求f(x).
(87年)假设D是矩阵A的r,阶子式,且D≠0,但含D的一切r+1阶子式都等于0.那么矩阵A的一切r+1阶子式都等于0.
(02年)设函数u=f(χ,y,z)有连续偏导数,且z=z(χ,y)由方程χeχ-yey=zez所确定,求du.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
[2017年]已知方程在区间(0,1)内有实根,求常数k的取值范围.
随机试题
急性肾小球肾炎中医辨证分型除风水相搏外尚有
甲公司在一次省政府所举行的管道燃气供应的招标活动中中标,但参加投标活动的乙公司对此次招标活动不满,欲向省政府就此次招标活动申请听证。下列各选项中正确的是:
不论是由建设工程参与方的哪一方提出的设计变更,作出变更决定后都应由( )签发《工程变更单》,指示承包单位按变更的决定组织方可施工。
某新校区抗震模拟实验室工程,主体部分采用钢架结构,施工合同约定钢材由业主供料,其余材料均委托承包商采购。但承包商在以自有机械设备进行主体钢结构制作吊装过程中,由于业主供应钢材不及时导致承包商停工7天,则承包商计算施工机械窝工费时,应按()向业主提出
()是指由财政部发行的,有固定面值及票面利率,通过纸质媒介记录债权债务的国债。
学生的权利有哪些?
课程目标的基本特征有哪些?
某日,甲市振兴区某职业中学学生(14周岁)、吴某(15周岁)、郑某(女、14周岁)、汪某(16周岁)因网络赌博输钱,囊中羞涩,于是商量要弄点钱。见路人杜某随身携带挎包走来,决定抢包。吴某和郑某把风,汪某和周某上前拽走杜某挎包后欲逃跑,被杜某拽住。随即四人对
对违法犯罪分子的改造工作,是()的特殊预防工作。
某投资者在3个月后将获得一笔资金,并希望用该笔资金进行股票投资。但是,该投资者担心股市整体上涨从而影响其投资成本,在这种情况下,可采取()策略。
最新回复
(
0
)