设f(χ)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(χ)≥0,f(χ)≥f′(χ)(χ>0),求证:f(χ)≡0.

admin2018-11-11  29

问题 设f(χ)在[0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(χ)≥0,f(χ)≥f′(χ)(χ>0),求证:f(χ)≡0.

选项

答案由f′(χ)-f(χ)≤0, 得 e-χ[f′(χ)-(χ)]=[e-χ(χ)]′≤0. 又f(χ)e-χχ=0=0, 则f(χ)e-χ≤f(χ)e-χχ=0=0.进而f(χ)≤0(χ∈[0,+∞)), 因此f(χ)≡0([*]χ∈[0,+∞)).

解析
转载请注明原文地址:https://kaotiyun.com/show/Vxj4777K
0

最新回复(0)