首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为求此二次型.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为求此二次型.
admin
2018-05-25
70
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
-2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为
求此二次型.
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值为λ
1
λ
2
=1,λ
3
=-2.由|A|=λ
1
λ
2
λ
3
=-2得A
*
的特征值为μ
1
=μ
2
=-2,μ
3
=1,从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=-2的特征向量. 令A的属于特征值λ
1
=λ
2
=1的特征向量为 [*] 因为A为实对称矩阵,所以有α
1
T
α=0,即x
1
+x
2
=0故矩阵A的属于λ
1
=λ
2
=1的特征向量为 [*] 令P=(α
2
,α
3
,α
1
)= [*] 得 [*] 所求的二次型为 f=X
T
AX=[*]x
3
2
-3x
1
x
3
解析
转载请注明原文地址:https://kaotiyun.com/show/WEW4777K
0
考研数学三
相关试题推荐
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0,则
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设线性方程组有解,则方程组右端=________。
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
鉴别是否为呕血的内容有
根据合穴或下合穴的理论,其病最可能出现反应的穴位是:取阴郄治疗薛某之病,其意义主要在于:
初孕妇,28岁,规律性子宫收缩10h,宫口开大8cm,胎心140/min,胎膜未破,首选的护理措施是
图1-2-9表示的是()。
银行的优秀管理者是银行的核心竞争力。()
下图为中国某河干流区不同土地利用类型的日蒸发量和日蒸发总量(各类用地面积与其日蒸发量的乘积)。读图完成下题。该河最有可能是()。
新民主主义革命时期,党领导的统一战线,先后经历了第一次国共合作的统一战线、工农民主统一战线、抗日民族统一战线、人民民主统一战线等几个时期,积累了丰富的经验,其中最根本的经验是()
TheBrownsandtheSmithsareneighbours.Mr.Brown’snameisAllen.Butwhenhisneighbourstalkabouthim,theycallhim"Mr.
HotSpotsinCrossCulturalCommunicationI.【T1】______Conversations【T1】______—Modesofaddress—【T2】_____【T2】______—Levelso
A、Everyonehastriedtoloseweightatsometimeinourlife.B、Manyoccupationstodayrequirevigorousphysicalactivity.C、Exc
最新回复
(
0
)