首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中正确的是( ).
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中正确的是( ).
admin
2021-07-27
48
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有命题
①(Ⅰ)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(Ⅰ)的解;
③(Ⅰ)的解不一定是(Ⅱ)的解;
④(Ⅱ)的解不一定是(Ⅰ)的解.
其中正确的是( ).
选项
A、①④
B、①②
C、②③
D、③④
答案
B
解析
当A
n
x=0时,易知A
n+1
x=A(A
n
x)=0,故(Ⅰ)的解必是(Ⅱ)的解,也即①正确,③不正确.当A
n+1
x=0时,假设A
n
x≠0,则有x,Ax,…,A
n
x均不为零向量,可以证明这种情况下x,Ax,…,A
n
x是线性无关的(按定义证,依次左乘A
n
,A
n-1
,…,A即可证得).由于x,Ax,…,A
n
x均为n维向量,而n+1个n维向量必定是线性相关的,矛盾.故假设不成立,因此必有A
n
x=0.可知(Ⅱ)的解必是(Ⅰ)的解,故②正确,④不正确.故选(B).
转载请注明原文地址:https://kaotiyun.com/show/WLy4777K
0
考研数学二
相关试题推荐
求微分方程y〞+y=χ2+3+cosχ的通解.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。求AB一1。
设n阶矩阵A,B等价,则下列说法中不一定成立的是()
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
下列矩阵中不能相似于对角阵的矩阵是
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1—λ1)β1+…+(ks一λs)βs=0,则
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
随机试题
中等量胸腔积液液面上方的体征特点为
关于中小企业实行会计电算化的岗位设置,下列说法正确的是()。
关于系列基金,下列说法不正确的是()。
个人转让下列财产不需缴纳个人所得税的是()。
新课程下的课程总目标按三个维度表达,即_______、_______、_______。
高中语文必修和选修课程均按___________组织学习内容,每个模块36学时,2学分。
—It’sreallyhottoday.Whatdrinksdowehaveinthefridge?—Wehavesome______.
态度与品德在人的一生中具有重要作用,请结合教学实际,谈谈如何帮助学生形成良好的态度与品德。
下图所示的数据模型属于
TheintelligencetestsusedmostoftentodayarebasedontheworkofaFrenchman,AlfredBinet.In1905,Binetwasaskedbythe
最新回复
(
0
)