首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中正确的是( ).
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题 ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不一定是(Ⅱ)的解; ④(Ⅱ)的解不一定是(Ⅰ)的解. 其中正确的是( ).
admin
2021-07-27
50
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有命题
①(Ⅰ)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(Ⅰ)的解;
③(Ⅰ)的解不一定是(Ⅱ)的解;
④(Ⅱ)的解不一定是(Ⅰ)的解.
其中正确的是( ).
选项
A、①④
B、①②
C、②③
D、③④
答案
B
解析
当A
n
x=0时,易知A
n+1
x=A(A
n
x)=0,故(Ⅰ)的解必是(Ⅱ)的解,也即①正确,③不正确.当A
n+1
x=0时,假设A
n
x≠0,则有x,Ax,…,A
n
x均不为零向量,可以证明这种情况下x,Ax,…,A
n
x是线性无关的(按定义证,依次左乘A
n
,A
n-1
,…,A即可证得).由于x,Ax,…,A
n
x均为n维向量,而n+1个n维向量必定是线性相关的,矛盾.故假设不成立,因此必有A
n
x=0.可知(Ⅱ)的解必是(Ⅰ)的解,故②正确,④不正确.故选(B).
转载请注明原文地址:https://kaotiyun.com/show/WLy4777K
0
考研数学二
相关试题推荐
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
设n阶矩阵A与B等价,则必有
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
下列矩阵中不能相似于对角阵的矩阵是
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
随机试题
A.渗透和滤过B.主动转运C.入胞作用D.单纯扩散氨基酸和葡萄糖在小肠的吸收机制为
A.手阳明大肠经B.足阳明胃经C.足太阳膀胱经D.手太阳小肠经E.足少阳胆经起于目内眦的经脉是
市政公用工程施工组织设计必须经( )批准。
甲公司是一家生产和销售钢铁的A股上市公司,其母公司为XYZ集团公司,甲公司为实现规模化经营、提升市场竞争力,多次通过资本市场融资成功进行了同行业并购,迅速扩大和提高了公司的生产能力和技术创新能力,奠定了公司在钢铁行业的地位,实现了跨越式发展,在一系列并购过
根据《旅行社条例实施细则》,旅行社在银行存人质量保证金的,应当设立独立账户,存期由旅行社确定,但不得少于()。
昨天冬冬和妞妞都病了,病症也类似。平日两人每天下午都在一起玩,因此,两人可能患的是同一种病,冬冬的病症有点像链球菌感染,但他患的肯定不是这种病。因此,妞妞患的病也肯定不是链球菌感染。以下哪项最为准确地概括了上述论证中的漏洞?
设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面说法中错误的是()。
被弗洛伊德描述为俄狄浦斯情节出现的阶段是在()。
Mostpeopleseeksomedegreeofinnerpeaceatwork,anditcanbedifficulttoobtain.Workisstressful,andmostofustendt
【S1】【S10】
最新回复
(
0
)