首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。 证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根。
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。 证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根。
admin
2019-08-09
32
问题
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。
证明:如果f(a)>0,则方程f(x)=0在区间
上有且仅有一个实根。
选项
答案
证一 根据定积分的保序性,在不等式f’(x)<k的两端从a到x积分,得到 ∫
a
x
f’(t)dt<∫
a
x
kdt=k(x-a) , 即 f(x)-f(a)<k(x-a), 亦即 f(x)<f(a)+k(x-a)(x>a)。 ① 令f(a)+k(x-a)=0,解得x=x
0
=a-f(a)/k,在式①中令x=x
0
得到f(x
0
)<0。 又f(a)>0,由零点定理知,f(x)=0在(a,x
0
)=(a,a-f(a)/k)内有实数根。 再由f’(x)<0(x>a),且f(x)在x≥a处连续知,f(x)在[a,a-f(a)/k]上单调减少,故方程f(x)=0在该区间只有一个实根。 证二 下用拉格朗日中值定理找出点x
0
,使f(x
0
)<0。由题设知,f(x)在[a,a-f(a)/k]上满足拉格朗日中值定理条件,故有 [*] 其中a<ξ<a-f(a)/k,因f’(x)<k<0,故f’(x)/k>1,因而由式②得到 [*] 于是所找的点即为x
0
=a-f(a)/k。 下面的证明与证一相同。
解析
[证题思路] 用零点定理证之,需找另一点x
0
,使f(x
0
)<0。下面用定积分性质找出x
0
,也可用拉格朗日中值定理找出x
0
,使f(x
0
)<0。
转载请注明原文地址:https://kaotiyun.com/show/WMc4777K
0
考研数学一
相关试题推荐
甲、乙两人相约于某地在12:00~13:00会面,设X,Y分别是甲、乙到达的时间,且假设X和Y相互独立,已知X,Y的概率密度分别为求先到达者需要等待的时间的数学期望.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设A为实矩阵,证明ATA的特征值都是非负实数.
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油.假设各辆车加油所需时间是相互独立且都服从参数为A的指数分布.(Ⅰ)求第三辆车C在加油站等待加油时间T的概率密度
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
构造齐次方程组,使得η1=(1,1,0,-1)T,η2=(0,2,1,1)T构成它的基础解系.
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知两个线性方程组同解,求m,n,t.
已知齐次方程组(Ⅰ)解都满足方程χ1+χ2+χ3=0,求a和方程组的通解.
方程y’"+2y"=x2+xe-2x的特解形式为()。
随机试题
社会主义核心价值体系的主要内容包括()
陶行知生活教育思想包括三个有机联系的部分:生活即教育,社会即学校,_________。
按劳分配是
核桃仁具有的功效是
若以Pt表示静态投资回收期,P’表示动态投资回收期,则对一个确定的项目来说()。
某工程有4个设计方案,方案一的功能系数为0.61,成本系数为0.55;方案二的功能系数为0.63,成本系数为0.6;方案三的功能系数为0.62,成本系数为0.57;方案四的功能系数为0.64,成本系数为0.56。根据价值工程原理确定的最优方案为( )。
单位负责人的直系亲属不得担任本单位会计机构负责人。()
(二)阅读下面这首诗,回答问题。泊秦淮(唐)杜牧
党的十八大报告指出,深入推进政企分开、政资分开、政事分开、政社分开,建设()的服务型政府。
TheInternetisabouttotakeoffinChina.Asmanyas9millionpeopleareonline,anumberthatisestimatedtohit20millio
最新回复
(
0
)