首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。 证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根。
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。 证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根。
admin
2019-08-09
29
问题
设f(x)在[a,+∞)上可导,且当x>a时,f’(x)<k<0(k为常数)。
证明:如果f(a)>0,则方程f(x)=0在区间
上有且仅有一个实根。
选项
答案
证一 根据定积分的保序性,在不等式f’(x)<k的两端从a到x积分,得到 ∫
a
x
f’(t)dt<∫
a
x
kdt=k(x-a) , 即 f(x)-f(a)<k(x-a), 亦即 f(x)<f(a)+k(x-a)(x>a)。 ① 令f(a)+k(x-a)=0,解得x=x
0
=a-f(a)/k,在式①中令x=x
0
得到f(x
0
)<0。 又f(a)>0,由零点定理知,f(x)=0在(a,x
0
)=(a,a-f(a)/k)内有实数根。 再由f’(x)<0(x>a),且f(x)在x≥a处连续知,f(x)在[a,a-f(a)/k]上单调减少,故方程f(x)=0在该区间只有一个实根。 证二 下用拉格朗日中值定理找出点x
0
,使f(x
0
)<0。由题设知,f(x)在[a,a-f(a)/k]上满足拉格朗日中值定理条件,故有 [*] 其中a<ξ<a-f(a)/k,因f’(x)<k<0,故f’(x)/k>1,因而由式②得到 [*] 于是所找的点即为x
0
=a-f(a)/k。 下面的证明与证一相同。
解析
[证题思路] 用零点定理证之,需找另一点x
0
,使f(x
0
)<0。下面用定积分性质找出x
0
,也可用拉格朗日中值定理找出x
0
,使f(x
0
)<0。
转载请注明原文地址:https://kaotiyun.com/show/WMc4777K
0
考研数学一
相关试题推荐
设总体X~N(μ,σ2),其中σ2未知,s2=,样本容量n,则参数μ的置信度为1一α的置信区间为().
某种内服药有使病人血压增高的副作用,已知血压的增高服从均值为μ0=22的正态分布.现研制出一种新药品,测试了10名服用新药病人的血压,记录血压增高的数据如下:18,27,23,15,18,15,18,20,17,8问这组数据能否支持“新
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量(Ⅰ)验证与的无偏性;(Ⅱ)比较与的有效性.
设总体X服从正态分布N(μ,σ2),其中σ2为已知,则当样本容量n一定时,总体均值μ的置信区间长度l增大,其置信度1-α的值
设α1,α2…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
设A=(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
已知(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,并且a≠1,求a.
设A=,β=①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
随机试题
凡是适于焊条电弧焊的接头形式同样适于药芯焊丝气体保护焊。
使用破乳率测定仪时,提起搅拌叶片后,要用玻璃棒把叶片上的油刮落到量筒内。()
A.腹壁柔韧感B.血性腹水C.两者均有D.两者均无腹膜转移癌
男,70岁,肺结核患者,咳血痰2天,今晚突然大咯血、鲜血从口鼻涌出。因害怕出血.患者极力屏气,压制咯血,随即出现烦躁不安,挣扎坐起,极度呼吸困难,额面青紫,表情恐怖,大汗淋漓,双眼上翻该患者如需输血,应依据
A、β2受体激动B、α1受体激动C、M受体激动D、N2受体激动E、DA受体激动骨骼肌收缩
《春秋》是我国一部经典著作,下列关于这部著作的说法正确的一项是()。
一般而言,一幅大画不可能__________,艺术家应该有一段时间收集资料、深入实地、写生采风,进而精心__________、反复__________。甚至数易其稿,从而成就一件佳作。填入划横线部分最恰当的一项是()。
已知f(x,y)=f(x,y)dxdy.
传输层的主要任务是完成()。
In1965,theUnitedStatesmadeimportantchangesinitsimmigrationlaws,allowingmanymoreimmigrantstocomeandentirelyel
最新回复
(
0
)