首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=z(x,y)是由9x2—54xy+90y2—6yz—z2+18=0确定的函数, (Ⅰ)求z=z(x,y)一阶偏导数与驻点; (Ⅱ)求z=z(x,y)的极值点和极值.
设z=z(x,y)是由9x2—54xy+90y2—6yz—z2+18=0确定的函数, (Ⅰ)求z=z(x,y)一阶偏导数与驻点; (Ⅱ)求z=z(x,y)的极值点和极值.
admin
2016-07-29
64
问题
设z=z(x,y)是由9x
2
—54xy+90y
2
—6yz—z
2
+18=0确定的函数,
(Ⅰ)求z=z(x,y)一阶偏导数与驻点;
(Ⅱ)求z=z(x,y)的极值点和极值.
选项
答案
(Ⅰ)利用一阶全微分形式不变性,将方程求全微分即得18xdx一54(ydx+xdy)+180ydy一6zdy一6ydz一2zdz=0,即(18x一54y)dc+(180y一54x一6z)dy一(6y+2z)dz=0.从而 [*] 为求隐函数z=z(x,y)的驻点,应解方程组 [*] ②可化简为x=3),,由③可得z=30y一9x=3y,代入①可解得两个驻点x=3,y=1,z=3与x=一3,y=一1,z=一3.(Ⅱ)z=z(x,y)的极值点必是它的驻点.为判定z=z(x,y)在两个驻点处是否取得极值,还需求z=2(x,y)在这两点的二阶偏导数.注意,在驻点P=(3,1,3),Q=(一3,一1,一3)处, [*]在驻点P,Q处 [*] 再由 [*]在驻点P,Q处 [*] 于是可得出在P点处 [*] 因[*] 故在点(3,1)处z=z(x,y)取得极小值z(3,1)=3.在Q点处 [*] 因[*] 故在点(一3,一1)处z=z(x,y)取得极大值z(一3,一1)=一3.
解析
转载请注明原文地址:https://kaotiyun.com/show/WWT4777K
0
考研数学三
相关试题推荐
2020年3月26日,美国所谓“2019年台北法案”被签署成法。美方这一行动严重违反一个中国原则和中美三个联合公报规定,严重违背国际法和国际关系基本准则,粗暴干涉中国内政。中方对此表示强烈不满和坚决反对。这表明(社)。
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
设空间区域Ω={(x,y,z)|x2+y2+z2≤R2,z≥0),Ω1={(x,y,z)|x2+y2+z2≤R2,x≥0,y≥0,z≥0},则下列选项中正确的是___________.
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
设函数f(x)任(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,则丨aE-An丨=___________.
设A=,而n≥2为正整数,、则An-2An-1=__________.
随机试题
下列说法正确的有()。
铜及铜合金焊接时,焊缝金属中的气孔类型主要为氢气孔和反应气孔。()
某产妇,足月产后3天,出现下腹痛,体温不高,恶露多,有臭味,子宫底位于脐上1指,子宫体软。以下护理措施中,错误的是
描述肺活量的生长发育特征错误的是
按照能源中长期发展规划,在充分考虑节能因素的情况下,我国到2020年能源消费总量将需要30亿t()。
数学老师讲课很生动,激发了小红认真学好数学的兴趣,这属于()。
由中国作协牵线搭桥,当今文坛具有重要影响的18位传统作家和网络世界有着极旺人气的18位网络作家开展了“结对交友”活动,在传统文学与网络文学两分天下的语境中,这项活动颇具探索、开创意味。传统文学和网络文学都是文学。两者在书写方式、传播方式和文本风格上有所不同
下面关于菜单的叙述中正确的是
Foraboutthreecenturieswehavebeendoingscience,tryingscienceout,usingsciencefortheconstructionofwhatwecallmod
ForgetMaryPoppins—aninetiesnanny(保姆)ismorelikelytoresembleMartinSmith,who,at22,isoneofthenewbreedofBritish
最新回复
(
0
)