首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2000年] 已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方
[2000年] 已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方
admin
2019-06-09
83
问题
[2000年] 已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
选项
答案
求切线方程的难点在于求f'(1).因题中只给出了函数f(x)在一点x=1处可导,这就决定了只能用导数定义求出f'(1). 由题设有[*]=0,因[*]=0,由命题1.2.6.1及f(x)在x=0处连续,得到 [*][f(1+sinx)一3f(1一sinx)-8x]=f(1)一3f(1)=0,即f(1)=0. 因f(x)的周期为5,所以在点(6,f(6))处和点(1,f(1))处曲线的切线具有相同斜率,且 f(1)=f(1+5)=f(6),f'(1)=f'(1+5)=f'(6).因而只需求出f'(1).根据定义求之,由题设有[*]{[f(1+sinx)一3f(1一sinx)]/(8x)}=1,则 [*] 即f'(1)=f'(6)=2.又f(1)=f(6)=0,故在点(6,f(6))处的切线方程为 y=2(x一6), 即 2x—y一12=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/WeV4777K
0
考研数学二
相关试题推荐
设方程组x3=a+3有无穷多个解,α1=,α2=,α3=为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.求A;
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x一t|f(t)dt。当x取何值时,F(x)取最小值;
交换积分次序∫1edx∫0lnxf(x,y)dy为()
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(η)=f(0);
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。计算。
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设函数f(x)=lnx+,数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
(1997年试题,一)已知在x=0处连续,则a=_________.
随机试题
肺痈之病名最早见于
布鲁纳认为,学习任何一门学科常有一连串的情节,每个情节都涉及的三个过程是()。
当今世界各国中,实行委员会制政府的国家是【】
下列有关建立和完善外商投资促进机制的相关说法正确的是:()
根据《全国建筑市场各方主体不良行为认定标准》,下列选项中可被认定为施工单位工程质量不良行为的有()。
关于无代价抵偿货物的税、证管理规定中,下列表述中错误的是()。
课外活动根据各学校、各地区的实际情况或学生的不同愿望开展,说明它具有()。
(1)写下数万字的调查报告(2)大学毕业(3)任教期间了解西部山区文化教育现状(4)被派往西部山区小学任教(5)申请加入志愿者服务西部计划
Doyourfeethurt?Everyone’sfeetaredifferent:fromthelengthofthefoottotheheightofthearch.Thisiswhynotallsho
Ourteachertoldusifit______wewouldvisittheScienceMuseumthenextday.
最新回复
(
0
)