首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
admin
2016-10-20
64
问题
证明α
1
,α
2
,…,α
s
(其中α
1
≠0)线性相关的充分必要条件是存在一个α
i
(1<i≤s)能由它前面的那些向量α
1
,α
2
,…,α
i-1
线性表出.
选项
答案
必要性.因为α
1
,α
2
,…,α
n
线性相关,故有不全为0的k
1
,k
2
,…,k
s
,使 k
1
α
1
,k
2
α
2
,…,k
s
α
s
=0. 设k
s
,k
s-1
,…,k
2
,k
1
中第一个不为0的是k
i
(即k
i
≠0,而k
i+1
=…=k
s-1
=k
s
=0),且必有i>1(若i=l即k
1
≠0,k
2
=…=k
s
=0,那么k
1
α
1
=0.于是α
1
=0与α
1
≠0矛盾.),从而k
1
α
1
+k
2
α
2
+…+k
i
α
i
=0, k
i
≠0.那么α
i
=[*](k
1
α
1
+k
2
α
2
+…+k
i-1
α
i-1
). 充分性.因为有α
i
=l
1
α
1
+l
2
α
2
+…+l
i-1
α
i-1
,于是 l
1
α
1
+…+l
i-1
α
i-1
-α
i
+0α
i+1
+…+0α
s
=0. 又因l
1
,…,l
i-1
,-1,0,…,0不全为0,故α
1
,α
2
,…,α
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/WqT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
A、 B、 C、 D、 B
设A,B是同阶正定矩阵,则下列命题错误的是().
设有来自三个地区的10名、15名、25名考生的报告表,其中女生的报名表分别为3份、7份、5份.随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率q.
证明[*]
设A与B均为n,阶矩阵,且A与B合同,则().
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
求过点P(1,2,1)及直线和平面Ⅱ:x+2y-z+4=0的交点Q的直线方程.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x).其中a(x)是当x—0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)一f(y)|≤|arctanx—arctany|,又f(1)=0,证明:
随机试题
屋面防水卷材平行屋脊的卷材搭接缝,其方向应()。
加热至60℃左右即易被破坏失效的药物是
______studentwithalittlecommonsenseshouldbeabletoanswerthequestion.
A.20周B.24周C.26周D.28周E.30周妊高征发生于妊娠后
某市建筑公司承接该市某化工厂综合楼工程的施工任务,该工程为5层底框架砖混结构,东西长39.9m,南北宽8.8m,建筑面积2250m2;采用十字交叉条形基础,其上布置底层框架。该公司为承揽该项施工任务,报价较低。因此,为降低成本,施工单位采用了一小厂提供的价
场依存型的学生的学业成绩一定会比场独立型的学生差。()
教育有法可依,但无定法可依。这说明教师劳动具有()。
下列被告(被申请人)负举证责任的是:
简述颜之推关于士大夫教育的思想。
A、 B、 C、 D、 D
最新回复
(
0
)