首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有旋转抛物面S:z=(χ2,y2)与平面П:2χ+2y+z+6=0,P0(χ0,y0,z0)是S上与平面П距离最近的点. (Ⅰ)求点P0及S与П的最短距离; (Ⅱ)、求S存P0、点的法线.并证明它与平面П垂直.
设有旋转抛物面S:z=(χ2,y2)与平面П:2χ+2y+z+6=0,P0(χ0,y0,z0)是S上与平面П距离最近的点. (Ⅰ)求点P0及S与П的最短距离; (Ⅱ)、求S存P0、点的法线.并证明它与平面П垂直.
admin
2018-06-12
28
问题
设有旋转抛物面S:z=
(χ
2
,y
2
)与平面П:2χ+2y+z+6=0,P
0
(χ
0
,y
0
,z
0
)是S上与平面П距离最近的点.
(Ⅰ)求点P
0
及S与П的最短距离;
(Ⅱ)、求S存P
0
、点的法线.并证明它与平面П垂直.
选项
答案
(Ⅰ)化为求解条件最值问题.设P(χ,y,z)为S上[*]点,P到П的距离 d=[*]|2χ+2y+z+6|. 求d存条件χ
2
+y
2
-2z=0下的最小值[*]求9d
2
=(2χ+2y+z+6)
2
在条件χ
2
+y
2
-2z=0下的最小值.用拉格朗日乘子法,令 F(χ,y,z,λ)=(2χ+2y+z+6)
2
+λ(χ
2
+y
2
-2z), 解方程组[*]=4(2χ+2y+z+6)+2λχ=0, ① [*]=4(2χ+2y+z+6)+2λy=0, ② [*]=2(2χ+2y+z+6)-2A=0, ③ [*]=χ
2
+y
2
-2z=0. ④ 由①,②,当λ≠0时得χ=y,代入②,③,④得 [*] 进一步解得 [*] 于是得χ=y=-2,z=4. 另λ=0时,对应[*]显然无解. 因此得唯一驻点P
0
(-2,-2,4).由于实际问题存在最小值,该P
0
点就是S上与П距离最近的点.P
0
点到П的距离d=[*]|2.(-2)+2.(-2)+4+6|=[*]. 就是旋转抛物面S到平面П的最短距离. (Ⅱ)旋转抛物面S:χ
2
+y
2
-2z=0上[*]点(χ,y,z)处的法向量为(2χ,2y,-2),S在点P
0
处的法向量η
1
=-2(2,2,1),П的法向量露η
2
=(2,2,1),η
1
∥η
2
因此S在P
0
的法线[*]与П垂直.
解析
转载请注明原文地址:https://kaotiyun.com/show/XFg4777K
0
考研数学一
相关试题推荐
设“一u(x,y,2)具有二阶连续偏导数,且满足又设S为曲面x2+y2+z2=2az(a>0)的外侧,则
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中P=;(2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明结论.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Aχ=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Aχ=b的通解是_______.
已知方程组有解,证明:方程组无解.
设随机变量Xi~B(i,0.1),i=1,2,…,15,且X1,X2,…,X15相互独立,根据切比雪夫不等式,则P的值
已知方程组与方程组是同解方程组,试确定参数a,b,c.
用概率论方法证明:
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且f(x,y)dx+xcosydy=t2,求f(x,y).
某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布N(50,3.82),在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为=51.26(设生产过程中方差不改变),在显著性水平为α=0.05下,检验生产过程是否正常.
设A,B同时发生,则C发生.证明:P(C)≥P(A)+P(B)一1.
随机试题
抗体负调节的主要机制是
某人冬季用煤球取暖,但因烟囱阻塞而煤气中毒,病人处于昏迷状态,大小便失禁,抢救时首要措施是
下列哪个可能是原位癌或早期鳞癌的表现
下列各项中,属于会计核算的有()
甲公司以及与甲公司发生交易的以下公司均为增值税一般纳税人,销售或进口货物适用的增值税税率均为17%,以下事项中销售价格均不含增值税。甲公司2016年发生如下经济业务:(1)1月1日,甲公司与乙公司签订协议,向乙公司销售商品,成本为90万元,增值税专用发票
皮亚杰认为,个体对环境的适应机能包括()。
公安工作具有打击与保护的双重特点,这是由公安工作的()所决定的。
Thepassageismainlyabout______.Fewairlineswanttoimposeatotalbanontheirpassengersusingelectronicdevicesbecaus
各级人民法院的院长要求最小年龄要达到()
Whatdidthemanwanttodo?
最新回复
(
0
)